Release and Capture Systems for Micro-Objects in Fluidic Environments: Design, Fabrication, and Comparative Evaluation
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12208Keywords:
Micro and nano mechatronic systems, Smart structures, Robotics technologies, Microsystems: nano- and micro-technologies, Application of mechatronic principlesAbstract
Precise manipulation of micro-objects within the bloodstream is essential for various minimally invasive medical procedures. This work presents the development and comparative analysis of two microgripper designs suitable for integration at the tip of a catheter: one based on capillary forces and the other employing a bistable mechanical mechanism. The former uses a controlled silicone oil droplet for gentle and adaptable object capture; its working principles and capillary bridge simulations are detailed. The latter features a direct mechanical gripping system with two stable states, offering rapid response, robustness, and low energy consumption, as validated through simulation. A comparative discussion evaluates both systems in terms of gripping mechanism, adaptability, control, and endovascular suitability, highlighting their respective advantages and limitations
References
Arutinov, G., Mastrangeli, M., Van Heck, G., Lambert, P., Den Toonder, J. M., Dietzel, A., Smits, E. C., 2015. Capillary Gripping and Self-Alignment: A Route Toward Autonomous Heterogeneous Assembly. IEEE Transactions on Robotics 31 (4), 1033–1043. DOI: 10.1109/TRO.2015.2452775
Barbot, A., Ortiz, F., Bolopion, A., Gauthier, M., Lambert, P., 2023. Exploiting Liquid Surface Tension in Microrobotics. Annual Review of Control, Robotics, and Autonomous Systems 6 (Volume 6, 2023), 313–334. DOI: 10.1146/annurev-control-062422-102559
Breger, J. C., Yoon, C., Xiao, R., Kwag, H. R., Wang, M. O., Fisher, J. P., Nguyen, T. D., Gracias, D. H., 2015. Self-folding thermo-magnetically responsive soft microgrippers. ACS Applied Materials and Interfaces 7 (5), 3398–3405. DOI: 10.1021/am508621s
Cazottes, P., Fernandes, A., Pouget, J., Hafez, M., 2009. Bistable buckled beam: Modeling of actuating force and experimental validations. Journal of Mechanical Design 131 (10), 1010011–10100110. DOI: 10.1115/1.3179003
Lambert, P., Letier, P., Delchambre, A., 2003. Capillary and surface tension forces in the manipulation of small parts. Proceedings of the IEEE International Symposium on Assembly and Task Planning 2003-Janua (2), 54–59. DOI: 10.1109/ISATP.2003.1217187
Mancha-Sánchez, E., Serrano-Balbontín, A. J., Tejado, I., Vinagre, B. M., may 2025. A Novel Variable Volume Capillary Microgripper for Micromanipulation in Aqueous Media. Micromachines 16 (6), 633. DOI: 10.3390/mi16060633
Power, M., Barbot, A., Seichepine, F., Yang, G. Z., 2023. Bistable, Pneumatically Actuated Microgripper Fabricated Using Two-Photon Polymerization and Oxygen Plasma Etching. Advanced Intelligent Systems 5 (4). DOI: 10.1002/aisy.202200121
Zhang, Z., Wang, X., Liu, J., Dai, C., Sun, Y., 2019. Robotic Micromanipulation: Fundamentals and Applications. Annual Review of Control, Robotics, and Autonomous Systems 2, 181–203. DOI: 10.1146/annurev-control-053018-023755
Zirbel, S. A., Tolman, K. A., Trease, B. P., Howell, L. L., 2016. Bistable mechanisms for space applications. PLoS ONE 11 (12), 1–18. DOI: 10.1371/journal.pone.0168218.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Enrique Mancha-Sánchez, Andrés J. Serrano-Balbontín, Inés Tejado, Blas M. Vinagre

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.