Wind power modelling using physical models and gaussian processes

Authors

  • Samuel Martínez-Gutiérrez Universidad de Burgos
  • Carlos Gutiérrez Universidad de Burgos
  • Alejandro Merino Universidad de Burgos
  • Daniel Sarabia Ortiz Universidad de Burgos

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12218

Keywords:

Nonparametric methods, Parametric optimization, Modelling, Power systems, Modelling and simulation of power systems

Abstract

Accurate modeling of power production in wind energy systems is essential for optimizing real-time operation and meeting technical or economic objectives. This work compares two approaches: a parametric one, based on analytical expressions of the power coefficient CP(λ,β), and a non-parametric one, which uses Gaussian Processes (GP) to probabilistically model the relationship between operating variables and generated power. Parametric models are efficient, interpretable and useful when the system dynamics are known, performing well under different scenarios. In contrast, GP models offer greater flexibility, integrate uncertainty and adapt to complex patterns in the data. We analyse the fit of both approaches with real wind turbine data and evaluate their performance using metrics such as Root Mean Square Error (RMSE) and computational cost. The results show that both methods are complementary for modelling the behaviour of wind turbines in different contexts.

References

Castillo, O. C., Andrade, V. R., Rivas, J. J. R., & González, R. O. (2023). Comparison of Power Coefficients in Wind Turbines Considering the Tip Speed Ratio and Blade Pitch Angle. Energies, 16(6), 2774. https://doi.org/10.3390/en16062774

Duc, T., & Simley, E. (2022, November 24). SMARTEOLE Wind Farm Control open dataset. Zenodo. https://doi.org/10.5281/zenodo.7342466

Hart, W. E., Watson, J.-P., & Woodruff, D. L. (2011). Pyomo: modeling and solving mathematical programs in Python. Mathematical Programming Computation, 3(3), 219–260.

Manyonge, A. W., Ochieng, R. M., Onyango, F. N., & Shichikha, J. M. (2012). Mathematical Modelling of Wind Turbine in a Wind Energy Conversion System: Power Coefficient Analysis. Applied Mathematical Sciences, 6(91), 4527–4536.

Matthews, A. G. de G., van der Wilk, M., Nickson, T., Fujii, Keisuke., Boukouvalas, A., León-Villagrá, P., Ghahramani, Z., & Hensman, J. (2017). GPflow: A Gaussian process library using TensorFlow. Journal of Machine Learning Research, 18(40), 1–6. http://jmlr.org/papers/v18/16-537.html

Pandit, R. K., Infield, D., & Kolios, A. (2020). Gaussian process power curve models incorporating wind turbine operational variables. Energy Reports, 6, 1658–1669. https://doi.org/10.1016/J.EGYR.2020.06.018

Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian Processes for Machine Learning. Gaussian Processes for Machine Learning. https://doi.org/10.7551/MITPRESS/3206.001.0001

Reyes, V., Rodriguez, J. J., Carranza, O., & Ortega, R. (2015). Review of mathematical models of both the power coefficient and the torque coefficient in wind turbines. IEEE International Symposium on Industrial Electronics, 2015-September, 1458–1463. https://doi.org/10.1109/ISIE.2015.7281688

Simley, E., Fleming, P., Girard, N., Alloin, L., Godefroy, E., & Duc, T. (2021). Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance. Wind Energy Science, 6(6), 1427–1453. https://doi.org/10.5194/wes-6-1427-2021

Sohoni, V., Gupta, S. C., & Nema, R. K. (2016). A Critical Review on Wind Turbine Power Curve Modelling Techniques and Their Applications in Wind Based Energy Systems. Journal of Energy, 2016(1), 8519785. https://doi.org/10.1155/2016/8519785

Van Rossum, G., & De Boer, J. (1991). Interactively testing remote servers using the Python programming language. CWI Quarterly, 4(4), 283–303.

Veena, R., Mathew, S., & Petra, M. I. (2020). Artificially intelligent models for the site-specific performance of wind turbines. International Journal of Energy and Environmental Engineering, 11(3), 289–297. https://doi.org/10.1007/S40095-020-00352-2/FIGURES/5

Villanueva, D., & Feijóo, A. (2018). Comparison of logistic functions for modeling wind turbine power curves. Electric Power Systems Research, 155, 281–288. https://doi.org/10.1016/J.EPSR.2017.10.028

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Wachter, A. (2002). An interior point algorithm for large-scale nonlinear optimization with applications in process engineering. Carnegie Mellon University.

Zhou, J., Guo, P., & Wang, X. R. (2014). Modeling of wind turbine power curve based on Gaussian process. Proceedings - International Conference on Machine Learning and Cybernetics, 1, 71–76. https://doi.org/10.1109/ICMLC.2014.7009094

Downloads

Published

2025-09-01

Issue

Section

Modelado, Simulación y Optimización