Modular integration of LLM-managed tools for the TIAGo++ robot

Authors

  • Elisabeth Menéndez Universidad Carlos III de Madrid
  • Juan Miguel García Haro Universidad Carlos III de Madrid
  • Santiago Martínez Universidad Carlos III de Madrid
  • Carlos Balaguer Universidad Carlos III de Madrid

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12229

Keywords:

Robot manipulators, Artificial intelligence, Human-robot interaction, Assistance robotics, Large Language Models

Abstract

This article presents a modular adaptation of a system based on Large Language models (LLM) to the TIAGo++ robot, with the goal of reusing the same agent across different robotic platforms without modifying its reasoning logic. The agent interprets user commands and employs semantic tools organized into four categories: query, diagnostic, expression and action. These tools enable the system to obtain information from the environment, generate verbal responses and execute physical tasks, all througha common interface that facilitates usability and portability. In particular, the action tools were implemented using a manipulation server compatible with MoveIt, allowing the execution of tasks such as handing over objects, placing them near a person, pushing them, or pouring contents between containers. Each tool provides a structured output allowing the agent to assess the success of the action and decide how to proceed. This modular architecture supports reuse, portability, and more effective interaction, while remaining open to the integration of new tools.

References

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman, K., et al., 2022. Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691. DOI: 10.48550/arXiv.2204.01691

Hwang, Y., Sato, A. J., Praveena, P., White, N. T., Mutlu, B., 2024. Understanding generative ai in robot logic parametrization. arXiv preprint arXiv:2411.04273. DOI: 10.48550/arXiv.2411.04273

Menendez, E., Martínez, S., Balaguer, C., 2024a. Seleccion y agarre robótico de objetos basada en el seguimiento de la mirada. In: Actas del Simposio de Robotica, Bioingeniería y Visión por Computador: Badajoz, 29 a 31 de mayo de 2024. Servicio de Publicaciones, pp. 127–132.

Menendez, E., Martínez, S., Díaz-de María, F., Balaguer, C., 2024b. Integrating egocentric and robotic vision for object identification using siamese networks and superquadric estimations in partial occlusion scenarios. Biomimetics 9 (2), 100. DOI: 10.3390/biomimetics9020100

Miller, A. T., Allen, P. K., 2004. Graspit! a versatile simulator for robotic grasping. IEEE Robotics & Automation Magazine 11 (4), 110–122. DOI: 10.1109/MRA.2004.1371616

Mon-Williams, R., Li, G., Long, R., Du, W., Lucas, C. G., 2025. Embodied large language models enable robots to complete complex tasks in unpredictable environments. Nature Machine Intelligence, 1–10. DOI: 10.1038/s42256-025-01005-x

Morrison, D., Corke, P., Leitner, J., 2020. Learning robust, real-time, reactive robotic grasping. The International journal of robotics research 39 (2-3), 183–201. DOI: 10.1177/0278364919859066

Pages, J., Marchionni, L., Ferro, F., 2016. Tiago: the modular robot that adapts to different research needs. In: International workshop on robot modularity, IROS. Vol. 290.

Pekarek Rosin, T., Hassouna, V., Sun, X., Krohm, L., Kordt, H.-L., Beetz, M., Wermter, S., 2024. A framework for adapting human-robot interaction to diverse user groups. In: International Conference on Social Robotics. Springer, pp. 24–38. DOI: 10.1007/978-981-96-3525-2_3

Tanneberg, D., Ocker, F., Hasler, S., Deigmoeller, J., Belardinelli, A., Wang, C., Wersing, H., Sendhoff, B., Gienger, M., 2024. To help or not to help: Llm-based attentive support for human-robot group interactions. In: 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 9130–9137. DOI: 10.1109/IROS58592.2024.10801517

Vemprala, S., Bonatti, R., Bucker, A., Kapoor, A., 2023. Chatgpt for robotics: Design principles and model abilities. 2023. Published by Microsoft. DOI: 10.1109/ACCESS.2024.3387941

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y., 2023. React: Synergizing reasoning and acting in language models. In: International Conference on Learning Representations (ICLR).

Downloads

Published

2025-09-01

Issue

Section

Robótica