Multimodal stimulation system using ROS2 for the study of proprioceptive afference and stimuli
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12232Keywords:
FES, Proprioception, Vibratory stimulation, ROS2, Muscle afferenceAbstract
This work presents the design and implementation of a functional electrical stimulation (FES) and vibratory-stimulation system with real-time inertial recording, built on ROS 2. Previous studies using similar systems are reviewed to identify the key parameters and guide prototype development. The phases for determining each subject’s sensory- and motor-threshold currents are described, and the platform supports four experimental protocols (FES-position, FES-velocity, VIB-position and VIB-velocity). Stimulation is delivered either through the TremUNA device or through micro-vibrators synchronized with forearm kinematics. The proposed architecture enables precise stimulation control, trial randomization and automatic event segmentation while logging all data for intra- and inter-subject analysis. Results confirm the feasibility of the platform as a research tool for studying the influence of electrical and vibratory afference on proprioception.
References
Busink, T., Quijorna, J., Delgado-Oleas, G., Bayon, C., Rocon, E., 2025. Development and technical validation of a gait-synchronised vibratory stimulation system for patients with parkinson’s disease. In: Converging Clinical and Engineering Research on Neurorehabilitation V. Vol. 31 of Biosystems & Biorobotics. Springer, Cham, pp. 769–773. DOI: 10.1007/978-3-031-77588-8 151
Chen, R., Cros, D., Curra, A., et al., 2008. The clinical diagnostic utility of transcranial magnetic stimulation: report of an ifcn committee. Clin Neurophysiol 119 (3), 504–532.
Ferrington, D. G., Nail, B. S., Rowe, M. J., 1977. Human tactile detection thresholds: modification by inputs from specific tactile receptor classes. J Physiol 272 (3), 737–750.
Gonzalez, D. R., Martín, J. Q., Oleas, G. D., Ramos, C. B., Rocon, E., 2024. Diseno y validación técnica de un sistema de estimulación vibratoria ´ sincronizada con la marcha para pacientes con enfermedad de parkinson: Implementacion con ros2. Revista Iberoamericana de Automática e ´ Informatica Industrial RIAI 21 (2), 192–202. URL: https://polipapers.upv.es/index.php/RIAI/article/view/18748 DOI: 10.4995/riai.2024.18748
Grill, W. M., Mortimer, J. T., 1995. Stimulus waveforms for selective neural stimulation. IEEE Eng Med Biol Mag 14 (4), 375–385.
Ibanez, J., Serrano, J. I., Del Castillo, M. D., et al., 2014. E ˜ ffects of alprazolam on cortical activity and tremors in patients with essential tremor. Clin Neurophysiol 125 (1), 110–118.
Ito, K., Nozaki, D., 2021. Kinesthetic illusion induced by electrical stimulation drives motor learning. Frontiers in Neuroscience 15, 620. DOI: 10.3389/fnins.2021.644051
Johansson, R. S., Vallbo, A. B., 1979. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286, 283–300.
Kandel, E. R., Schwartz, J. H., Jessell, T. M., 2013. Principles of Neural Science, 5th Edition. McGraw-Hill. McCloskey, D. I., 1978. Kinesthetic sensibility. Physiol Rev 58 (4), 763–820.
McCloskey, D. I., 1978. Kinesthetic sensibility. Physiol Rev 58 (4), 763–820.
Popovic Maneski, L., Jorgovanovi ´ c, N., Ili ´ c, V., Do ´ sen, S., Keller, T., Popovic, M., Popovi ´ c, D. B., 2011. Electrical stimulation for the suppression ´of pathological tremor. Medical & Biological Engineering & Computing 49 (10), 1187–1193. URL: https://doi.org/10.1007/s11517-011-0803-6 DOI: 10.1007/s11517-011-0803-6
Proske, U., Gandevia, S. C., 2012. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92 (4), 1651–1697.
Proske, U., Gandevia, S. C., 2018. Kinesthetic senses. Comprehensive Physiology 8 (3), 1157–1183. DOI: 10.1002/cphy.c170036
Rattay, F., 1999. The basic mechanisms for the electrical stimulation of the nervous system. Neuroscience 89 (2), 335–346.
Sherrington, C., 1910. Observations on the scratch-reflex in the spinal dog. JPhysiol 40 (1-2), 28–121.
Shukla, A.,Weiland, J., 2024. Development of a compact high-voltage fes device for portable applications. IEEE Transactions on Biomedical Circuits and Systems 18 (2), 225–235. DOI: 10.1109/TBCAS.2024.1234567
Valle, G., Raspopovic, S., 2023. Somatosensory neuroprosthesis improves walking stability in lower-limb amputees. Scientific Reports 13 (1), 1450. DOI: 10.1038/s41598-023-28488-2
Zhang, Y., Zhao, M., 2024. Efficacy of temporal interference stimulation in spinal cord injury patients. Frontiers in Neuroscience 18, 1123. DOI: 10.3389/fnins.2024.01123
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Javier José Gavilanes Carrión, Mishell Vizuete, Eduardo Rocon de Lima, Antonio José del Ama Espinosa, Julio Salvador Lora Milan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.