Control and virtualization of a RH8D robotic hand using ROS

Authors

  • Ana María Martínez García Universidad de Alicante
  • Daniel Sánchez Martínez Universidad de Alicante
  • Andrés Úbeda Castellanos Universidad de Alicante
  • Carlos Alberto Jara Bravo Universidad de Alicante
  • Vicente Morell Giménez Universidad de Alicante

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12233

Keywords:

Robótica y control, Sistemas biológicos y médicos, Sistemas mecatrónicos

Abstract

This work presents the development of a hybrid control system for the RH8D robotic hand (Seed Hand), integrating different forms of human-machine interaction. The system includes hand control from a graphical interface created inMATLAB combined with a myoelectric control system. To achieve this, a distributed architecture supported by ROS is used, enabling efficient and flexible communication between devices and platforms. Furthermore, a digital twin of the hand has been implemented in Unity that replicates the movements of the physical hand in real time based on data received via ROS. This virtualization provides added value to the system, offering remote monitoring and pre-simulation capabilities. The proposal serves as a basis for future developments in the field of virtual training of myoelectric control of robotic prostheses.

References

Carro, R., Costales, F., A., O., 2022. Serious games for training myoelectric prostheses through multi-contact devices. Children 9 (3), 423. DOI: 10.3390/children9030423

Cellupica, A., Cirelli, M., Saggio, G., Valentini, P., 2024. An interactive digital-twin model for virtual reality environments to train in the use of a sensorized upper-limb rosthesis. Algorithm 17, 35. DOI: 10.3390/a17010035

Chappell, D., Son, H., Clark, A., Yang, Z., Bello, F., Kormushev, P., Rojas, N., 2022. Virtual reality pre-prosthetic hand training with physics simulationand robotic force interaction. IEEE Robotics and Automation Letters 7 (2), 4550–4557.DOI: 10.1109/LRA.2022.3151569

Geethanjali, P., 2016. Myoelectric control of prosthetic hands: state-of-the-art review. Medical Devices: Evidence and Research 27 (9), 247–255. DOI: 10.2147/MDER.S91102

Joyner, J., Vaughn-Cooke, M., Benz, H., 2021. Comparison of dexterous task performance in virtual reality and real-world rnvironments. Frontiers in Virtual Reality 2, 599274. DOI: 10.3389/frvir.2021.599274

Mendez, V., Iberite, F., Shokur, S., Micera, S., 2021. Current solutions and future trends for robotic prosthetic hands. Annual Review of Control, Robotics, and Autonomous Systems 4, 595–627. DOI: 10.1146/annurev-control-071020-104336

Polo-Hortigüela, C., Maximo, M., Jara, C., Ramon, J., Garcia, G., Ubeda, A., 2024. A comparison of myoelectric control modes for an assistive robotic virtual platform. Bioengineering 11, 473. DOI: 10.3390/bioengineering11050473

Singh, M., Kapukotuwa, J., Gouveia, E., Fuenmayor, E., Qiao, Y., Murry, N., Devine, D., 2024. Unity and ros as a digital and communication layer for digital twin application: Case study of robotic arm in a smart manufacturing cell. Sensors 24 (17), 5680. DOI: 10.3390/s24175680

Weinberg, A., Shirizly, A., Azulay, O., Shintov, S., 2024. Survey of learningbased approaches for robotic in-hand manipulation. Frontiers in Robotics and AI 11, 1455431. DOI: 10.3389/frobt.2024.1455431

Downloads

Published

2025-09-01

Issue

Section

Bioingeniería