NBV Planning for the detection of hidden tomatoes in greenhouses with AgriSEE

Authors

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12234

Keywords:

agricultural robotics, mobile robots, robots manipulators, trajectory and path planning, map building

Abstract

Intensive greenhouse agriculture is essential to support global population growth. However, the increasing population demands a transformation of current agricultural systems into more efficient and sustainable models. In this context, automation, particularly robotics, emerges as a key solution to address the challenges of the sector, especially tasks that are monotonous, unhealthy, or hazardous (DDD: Dull, Dirty, Dangerous). This study focuses on implementing a Next Best View (NBV) planning algorithm, specifically SEE++, to generate 3D models using point clouds. A Universal Robots UR3 robotic arm is equipped with an Intel RealSense L515 camera to scan fruits in a simulated greenhouse environment. The proposed methodology dynamically determines the next best view to optimise the scanning process. The results demonstrate the system’s ability to detect tomatoes in dynamic simulation environments, where traditional methods fail to accurately locate partially occluded objects. This work lays the foundation for future applications in automated harvesting.

References

Abanay, A., Masmoudi, L., El Ansari, M., Gonzalez-Jimenez, J., Moreno, F.A., 2022. Lidar-based autonomous navigation method for an agricultural mobile robot in strawberry greenhouse: Agrieco robot. AIMS Electron. Electr. Eng 6 (3), 317–328.

Aguilar, F. J., Blanco-Claraco, J. L., Nemmaoui, A., Cañadas-Aránega, F., Aguilar, M., Moreno, J. C., 2024. Preliminary results of a low-cost portable terrestrial lidar based on icp-slam algorithms. application to automatic forest digital inventory. In: 6th Euro-Mediterranean Conference for Environmental Integration (EMCEI-2024).

Aranega, F. C., Claraco, J. L. B., Alvarez, F. J. M., Úbeda, J. C. M., 2024. Navegación de un robot ackermann para tareas de transporte en invernaderos mediterráneos con multivehicle simulator (mvsim). Jornadas de Automática (45).

Border, R., Chebrolu, N., Tao, Y., Gammell, J. D., Fallon, M., 2024. Osprey: Multi-session autonomous aerial mapping with lidar-based slam and next best view planning. IEEE Transactions on Field Robotics.

Border, R., Gammell, J. D., 2024. The surface edge explorer (see): A measurement-direct approach to next best view planning. The International Journal of Robotics Research 43 (10), 1506–1532.

Border, R., Gammell, J. D., Newman, P., 2018. Surface edge explorer (see): Planning next best views directly from 3d observations. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 6116–6123.

Cañadas-Aránega, F., Moreno, J., Rodriguez, F., Blanco-Claraco, J. L., 2024a. Análisis de la configuraci´on de los pasillos de un invernadero de tipo mediterráneo para la navegación de robots móviles. In: IV Simposium de Ingeniería Hortícola.

Cañadas-Aránega, F., Moreno, J. C., Blanco-Claraco, J. L., 2024b. A pid-based control architecture for mobile robot path planning in greenhouses. IFAC-PapersOnLine 58 (7), 503–508.

Cañadas-Aránega, F., Moreno, J. C., Blanco-Claraco, J. L., Giménez, A., Rodríguez, F., Sánchez-Hermosilla, J., 2024c. Autonomous collaborative mobile robot for greenhouses: Design, development, and validation tests. Smart Agricultural Technology, 100606.

Cañadas-Aránega, F., Rowan, B., Moreno, J., Rodriguez, F., Blanco-Claraco, J. L., 2025. Agriculture surface edge explorer (agrisee): Active reconstruction of occluded tomatoes in greenhouses. In: Simposio CEA de Robótica, Bioingeniería, Visi´on Artificial y Autom´atica Marina.

Cañdas-Aránega, F., Blanco-Claraco, J. L., Moreno, J. C., Rodriguez-Diaz, F., 2024. Multimodal mobile robotic dataset for a typical mediterranean greenhouse: The greenbot dataset. Sensors 24 (6). URL: https://www.mdpi.com/1424-8220/24/6/1874 DOI: 10.3390/s24061874

Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J., 2021. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430.

Ko, M. H., Ryuh, B.-S., Kim, K. C., Suprem, A., Mahalik, N. P., 2014. Autonomous greenhouse mobile robot driving strategies from system integration perspective: Review and application. IEEE/ASME Transactions On Mechatronics 20 (4), 1705–1716.

Liu, K., Yu, J., Huang, Z., Liu, L., Shi, Y., 2024. Autonomous navigation system for greenhouse tomato picking robots based on laser slam. Alexandria engineering journal 100, 208–219.

Mishenin, R., Eryomin, A., Tsoy, T., Magid, E., 2024. Implementation and validation of the cautiousbug algorithm in ros noetic. In: 2024 8th International Conference on Information, Control, and Communication Technologies (ICCT). IEEE, pp. 1–4.

Moreno, J., Rodríguez, F., Sánchez-Hermosilla, J., Giménez, A., Sánchez-Molina, J., 2024. Feasibility analysis of robots in greenhouses. a case study in european mediterranean countries. Smart Agricultural Technology 9, 100638.

Moreno Úbeda, J. C., Cañadas-Aránega, F., Rodríguez, F., Sánchez-Hermosilla, J., Giménez, A., 2022. Modelado 3d y diseño de un robot colaborativo para tareas de transporte en invernaderos. In: XLIII Jornadas de Automática. Universidade da Coruña. Servizo de Publicacións, pp. 785–791.

Rong, J., Wang, P., Wang, T., Hu, L., Yuan, T., 2022. Fruit pose recognition and directional orderly grasping strategies for tomato harvesting robots. Computers and Electronics in Agriculture 202, 107430.

Rusu, R. B., Cousins, S., 2011. 3d is here: Point cloud library (pcl). In: 2011 IEEE international conference on robotics and automation. IEEE, pp. 1–4.

Sánchez-Molina, J., Rodríguez, F., Moreno, J., Sánchez-Hermosilla, J., Giménez, A., 2024. Robotics in greenhouses. scoping review. Computers and Electronics in Agriculture 219, 108750.

Zheng, X., Rong, J., Zhang, Z., Yang, Y., Li, W., Yuan, T., 2024. Fruit growing direction recognition and nesting grasping strategies for tomato harvesting robots. Journal of Field Robotics 41 (2), 300–313.

Downloads

Published

2025-09-01

Issue

Section

Robótica