Reconfigurable mobile robotic platform for research and teaching

Authors

  • Laura Garrido-Rey Universitat de València
  • J. Daniel Navarro-González Universitat de València
  • Silvia Casans Universitat de València
  • Enrique Sanchis Universitat de València
  • Vicent Girbés-Juan Universitat de València

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12235

Keywords:

Autonomous mobile robots, Information and sensor fusion, Cooperative navigation, Localization, Map building, Motion control, Robot Navigation, Multi-vehicle systems

Abstract

This work presents the design and development of a modular ground mobile robotic platform aimed at research and educational purposes. The platform supports three interchangeable kinematic configurations (differential, skid-steering, and omnidirectional) by swapping its wheels. It is structured into three layers that integrate sensors, actuators, and processors. Low-level control is handled by an ESP32 microcontroller running FreeRTOS, while high-level tasks such as planning and navigation are performed on a Raspberry Pi 5 using ROS2 Jazzy. The microcontroller implements forward and inverse kinematics computations, PID control for wheel speed regulation, and an Extended Kalman Filter for robot’s state estimation (odometry). Additionally, a digital twin has been developed in ROS2 to simulate the behavior of each configuration. Finally, a visual Leader-Follower control strategy has been validated between robots using ArUco marker detection and position-based visual servoing, enabling collaboration within multi-robot systems.

References

Alonso-Mora, J., Montijano, E., Schwager, M., & Rus, D. (2016) ‘Distributed multi-robot formation control among obstacles: A geometric and optimization approach with consensus’, Proceedings - IEEE International Conference on Robotics and Automation, pp. 5356–5363. DOI: 10.1109/ICRA.2016.7487747.

Al-Shanoon, A., Tan, A. H., Lang, H., & Wang, Y. (2018) ‘Mobile robot regulation with position based visual servoing’, IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, pp. 1-6. DOI: 10.1109/CIVEMSA.2018.8439978.

Chan, W.K. & Srigrarom, S. (2023) ‘Image-based Visual-Servoing for Air-to-Air Drone Tracking & Following with Model Predictive Control’, Proceedings of 2023 SICE International Symposium on Control Systems, pp. 1–7. DOI: 10.23919/SICEISCS57194.2023.10079208.

Chen, T., Sun, Y., Niu, X., Lan, Y., Fang, W., & Liu, P. (2022) ‘Formation control for second-order nonlinear multi-agent systems with external disturbances via adaptive method’, Proceedings - 2022 Chinese Automation Congress, CAC 2022, 2022-January, pp. 5616–5620. DOI: 10.1109/CAC57257.2022.10055393.

Conejero, M. N., Montes, H., Bengochea-Guevara, J. M., Garrido-Rey, L., Andújar, D., & Ribeiro, A. (2025) ‘A collaborative robotic fleet for yield mapping and manual fruit harvesting assistance’, Computers and Electronics in Agriculture, 235, 110351. DOI: 10.1016/J.COMPAG. 2025.110351.

Ebel, H. & Eberhard, P. (2021) ‘Non-Prehensile Cooperative Object Transportation with Omnidirectional Mobile Robots: Organization, Control, Simulation, and Experimentation’, 2021 International Symposium on Multi-Robot and Multi-Agent Systems, MRS 2021, pp. 1–10. DOI: 10.1109/MRS50823.2021.9620541.

Galati, R. & Mantriota, G. (2023) ‘Path Following for an Omnidirectional Robot Using a Non-Linear Model Predictive Controller for Intelligent Warehouses’, Robotics, 12(3), p. 78. DOI: 10.3390/ROBOTICS12030078.

Girbés, V., Armesto, L., & Tornero, J. (2010, June). Pisala project. intelligent sensorization for line tracking with artificial vision. 41st International Symposium on Robotics, pp. 1-6. VDE.

Girbés, V., Armesto, L., & Tornero, J. (2014). ‘Path following hybrid control for vehicle stability applied to industrial forklifts’. Robotics and Autonomous Systems, 62(6), 910-922.

Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to autonomous mobile robots. MIT press. ISBN: 9780262295321

Sprunk, C., Lau, B., Pfaff, P., & Burgard, W. (2017) ‘An accurate and efficient navigation system for omnidirectional robots in industrial environments’, Autonomous Robots, 41(2), pp. 473-493. DOI: 10.1007/s10514-016-9557-1.

Tsai, C. C., Wu, H. L., Tai, F. C., & Chen, Y. S. (2017) ‘Distributed consensus formation control with collision and obstacle avoidance for uncertain networked omnidirectional multi-robot systems using fuzzy wavelet neural networks’, Int. Journal of Fuzzy Systems, 19(5), pp. 1375–1391. DOI: 10.1007/s40815-016-0239-0.

Wang, K., Liu, Y. & Li, L. (2014) ‘Visual servoing trajectory tracking of nonholonomic mobile robots without direct position measurement’, IEEE Trans. on Robotics, 30(4), pp. 1026–1035. DOI: 10.1109/TRO.2014.2317891.

Zhang, Y. & Li, S. (2018) ‘A Neural Controller for Image-Based Visual Servoing of Manipulators with Physical Constraints’, IEEE Transactions on Neural Networks and Learning Systems, 29(11), pp. 5419–5429. DOI: 10.1109/TNNLS.2018.2802650.

Downloads

Published

2025-09-01

Issue

Section

Robótica