Implementation of MPC for trajectory tracking in an omnidirectional mobile robot
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12237Keywords:
Linear parameter varying, Embedded control systems, Mobile robots, Model predictive control, Trajectory trackingAbstract
This work presents a control architecture for a three-wheeled omnidirectional mobile robot, experimentally validated on the Robotino 4 platform. The solution avoids the use of ROS (Robot Operating System) by delegating the computation of the predictive controller to an externalMATLAB workstation, which communicates with the robot via TCP/IP (Transmission Control Protocol/Internet Protocol). The robot runs a C++ program that receives velocity commands and sends odometry data to the control station. An LPV-MPC (Linear Parameter Varying Model Predictive Control) scheme is implemented to simultaneously regulate the position of the robot (x, y) and orientation (θ), while explicitly considering constraints on velocity, acceleration and position. The model is linearized in real time, enabling trajectory tracking under realistic conditions. The solution has been validated using an oval reference trajectory, demonstrating good performance and bounded tracking errors. The proposed architecture is modular and scalable, and can be extended to include dynamic environment planning or future integration with ROS 2.
References
Alcalá, E., Puig, V., Quevedo, J., Sename, O., 2020. Fast zonotope-tube-based lpv-mpc for autonomous vehicles. IET Control Theory & Applications 14 (20), 3676–3685. DOI: 10.1049/iet-cta.2020.0562
Atoui, H., Sename, O., Milanés, V., Martinez, J. J., 2022. Lpv-based autonomous vehicle lateral controllers: A comparative analysis. IEEE Transactions on Intelligent Transportation Systems 23 (8), 13570–13581. DOI: 10.1109/TITS.2021.3125771
Cáceres Flórez, C., Rosario, J., Amaya, D., 04 2018. Design, simulation, and control of an omnidirectional mobile robot. International Review of Mechanical Engineering (IREME) 12, 382. DOI: 10.15866/ireme.v12i4.13974
El-Sayyah, M., Saad, M., Saad, M., 01 2022. Enhanced mpc for omnidirectional robot motion tracking using laguerre functions and non-iterative linearization. IEEE Access PP, 1–1. DOI: 10.1109/ACCESS.2022.3220240
Fényes, D., Hegedűs, T., Németh, B., Gáspár, P., Koenig, D., Sename, O., 2020. Lpv control for autonomous vehicles using a machine learningbased tire pressure estimation. In: 2020 28th Mediterranean Conference on Control and Automation (MED). pp. 212–217. DOI: 10.1109/MED48518.2020.9183106
Mercorelli, P., Voss, T., Strassberger, D., Sergiyenko, O., Lindner, L., 2017. Optimal trajectory generation using mpc in robotino and its implementation with ros system. In: 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). pp. 1642–1647. DOI: 10.1109/ISIE.2017.8001493
Niemueller, T., Lakemeyer, G., Ferrein, A., mar 2013. Incremental task-level reasoning in a competitive factory automation scenario. In: AAAI Spring Symposium 2013 on Designing Intelligent Robots: Reintegrating AI II. Stanford University, CA, USA.
Villalba-Aguilera, E., 2024. Creación de escenarios para la navegaci´on de robot móvil. Final Master Report, ETSEIB, Universitat Polit`ecnica de Catalunya. URL: https://upcommons.upc.edu/handle/2117/414014
Villalba-Aguilera, E., 2025. Programa c++ para robotino. https://github.com/elena-villalba/robotino-lowlevel-interface, accedido el 29 de mayo de 2025.
Villalba-Aguilera, E., Blesa, J., Ponsa, P., 2025. Model-based predictive control for position and orientation tracking in a multilayer architecture for a three-wheeled omnidirectional mobile robot. Robotics 14 (6). DOI: 10.3390/robotics14060072
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Elena Villalba-Aguilera, Joaquim Blesa, Pere Ponsa

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.