Non Linear Model of Battery and Converter for Microgrids

Authors

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12240

Keywords:

Smart grids, Modeling and simulation of power systems, Power electronics, Nonlinear analysis and design, Constraint and security monitoring, Control systems

Abstract

This paper presents a novel nonlinear discrete-time model for the battery-converter assembly commonly found in the majority of microgrid topologies. The primary motivation is to develop a high-resolution model suitable for simulations or for integration into the optimizer of an advanced predictive controller. The necessary equations for such models are presented, and through algebraic manipulation and the introduction of specific definitions, the desired control variables are explicitly incorporated. Furthermore, the mutual interaction between the battery and the converter is addressed in detail, along with the determination of the feasible operating space given a particular system state. Finally, a practical application case study is presented, and the corresponding results are discussed.

References

Achaibou, N., Haddadi, M., Malek, A., 2012. Modeling of lead acid batteries in pv systems. Energy Procedia 18, 538–544.

Bordons, C., Garcia-Torres, F., Ridao, M. A., 2020. Model Predictive Control of Microgrids. Advances in Industrial Control. Springer.

Ceraolo, M., 2000. New dynamical models of lead-acid batteries. IEEE Transactions on Power Systems 15.

Chivelet, N. M., Chenlo-Romero, F., Alonso-Garcia, M. C., 1994. Modelado y fiabilidad de los inversores para instalaciones fotovoltaicas autónomas a partir de medidas con cargas resistivas y reactivas. 7th Congresso Ibérico de Energía Solar, 463–468.

Copetti, J. B., Lorenzo, E., Chenlo, F., 1993. A general battery model for pv system simulation. Progress in Photovoltaics: Research and Applications 1, 283–292.

Driesse, A., Jain, P., Harrison, S., 2008. Beyond the curves: modeling the electrical efficiency of photovoltaic inverters. 33rd IEEE Photovoltaic Specialists Conference (PVSC ’08), 1–6.

Dupont, F. H., Bertomeu, J. Z., Rech, C., Pinheiro, J. R., 2011. Mathematical efficiency modeling of static power converters.

Franke, M., Kowal, J., 2018. Empirical sulfation model for valve-regulated lead-acid batteries under cycling operation. Journal of Power Sources 380, 76–82.

Hirsch, A., Parag, Y., Guerrero, J., 2018. Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews 90, 402–411. DOI: https://doi.org/10.1016/j.rser.2018.03.040

Jantsch, M., Schimidt, H., Schmid, J., 1992. Results of the concerted action on power conditioning and control. 11th European Photovoltaic Solar Energy Conference, 1589–1593.

Manwell, J. F., McGowan, J. G., 1993. Lead acid battery storage model for hybrid energy systems. Solar Energy 50, 399–405.

Rampinelli, G. A., 2010. Estudo de características elétricas e térmicas de inversores para sistemas fotovoltaicos conectados à rede.

Shahgholian, G., 2021. A brief review on microgrids: Operation, applications, modeling, and control. DOI: 10.1002/2050-7038.12885

Vivas, F., Segura, F., Andújar, J., Caparrós, J., 2020. A suitable state-space model for renewable source-based microgrids with hydrogen as backup for the design of energy management systems. Energy Conversion and Management 219, 113053. DOI: https://doi.org/10.1016/j.enconman.2020.113053

Downloads

Published

2025-09-01

Issue

Section

Modelado, Simulación y Optimización