Automatic Defect Generation Tool in CAD Models

Authors

  • Jose Daniel Navarro González Universitat de València
  • Héctor Bastida Miguel Universitat Politècnica de València
  • Laura Garrido Rey Universitat de València
  • Josep Tornero Montserrat Universitat Politècnica de València
  • Vicent Girbés-Juan Universitat de València https://orcid.org/0000-0001-5009-9262

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12241

Keywords:

Robotic manipulators, Force control, Collaborative robots, Flexible tools, Digital twin, Work in real and virtual environments, Quality assurance and maintenance

Abstract

Automated inspection and repair of defects on car bodies is a major challenge in the automation of the automotive sector, especially in surface treatment tasks such as sanding or polishing. Since the physical tests required in surface treatment tasks are destructive and costly, the use of virtual environments is proposed to validate new trajectory planning and force control algorithms. This work presents a tool for the semi-autonomous and parameterized generation of defects on CAD models, which will be integrated into an inspection and repair system based on ROS and Gazebo. The system uses the digital twin of a KUKA LBR iiwa robot with integrated force/torque sensors, mounted on a mobile platform, and includes virtual models of tools and consumables. The tool enables the generation of both micro-defects and macro-defects (dings and dents) in various shapes. This facilitates the development and validation of repair algorithms in simulation, accelerating the design of industrial solutions.

References

Bogue, R., 2013. Robotic vision boosts automotive industry quality and productivity. Industrial Robot, Vol. 40 No. 5, pp. 415-419. doi.org/10.1108/IR-04-2013-342

Chatzilygeroudis, K., Mayr, M., Fichera, B., & Billard, A. (2019). iiwa_ros: A ROS Stack for KUKA's IIWA robots using the Fast Research Interface. GitHub. http://github.com/epfl-lasa/iiwa_ros

Iranshahi, K., Brun, J., Arnold, T., Sergi, T., Ulf Müller, C., 2025. Digital twins: Recent advances and future directions in engineering fields. Intelligent Systems with Applications, Volume 26. doi.org/10.1016/j.iswa.2025.200516.

Mohsen, S., Behrooz, A., Roza, D., 2023. Digital twin for smart manufacturing, A review. Sustainable Manufacturing and Service Economics, Volume 2. doi.org/10.1016/j.smse.2023.100017.

Morales Matamoros, O., Takeo Nava, J.G., Moreno Escobar, J.J., y Ceballos Chávez, B.A. 2025. Inteligencia Artificial para Defectos de Calidad en la Industria Automotriz: Una Revisión Sistémica. Sensors, 25 (5), 1288. doi.org/10.3390/s25051288.

Shahria, MT, Sunny, MSH, Zarif, MII, Ghommam, J., Ahamed, SI y Rahman, MH, 2022. Una revisión exhaustiva de las aplicaciones robóticas basadas en visión: Estado actual, componentes, enfoques, obstáculos y posibles soluciones. Robótica, 11 (6), 139. doi.org/10.3390/robotics11060139

Downloads

Published

2025-09-01

Issue

Section

Modelado, Simulación y Optimización