Challenges in intelligent robotic manipulation in self-driving laboratories

Authors

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12244

Keywords:

Automation, Robotic manipulator, Self-driving lab

Abstract

Self-driving labs (SDLs) represent an innovative approach that combines artificial intelligence, process automation, robotics, and materials science. These environments are designed to perform experiments without direct human intervention, significantly accelerating the discovery and optimization of new materials. This article presents the general components of an SDL, describing their functionality, dependencies, and interactions with each other to perform chemical experiments. Within these components, one of the fundamental blocks is robotic manipulation, which allows experimental tasks to be executed in a precise, repeatable, and efficient manner. Programmable robotic arms perform operations such as liquid dispensing, compound mixing, sample transfer, and instrument cleaning, replacing tasks traditionally performed by human technicians. Therefore, this article also identifies the main challenges in intelligent robotic manipulation required for the optimal functioning of SDLs.

References

Abolhasani, M., Kumacheva, E., 2023. The rise of self-driving labs in chemical and materials sciences. Nature Synthesis 2 (6), 483–492. DOI: 10.1038/s44160-022-00231-0

Baden, T., Chagas, A. M., Gage, G., Marzullo, T., Prieto-Godino, L. L., Euler, T., 2015. Open labware: 3-d printing your own lab equipment. PLoS biology 13 (3), e1002086. DOI: 10.1371/journal.pbio.1002086

Beeler, C., Subramanian, S. G., Sprague, K., Chatti, N., Bellinger, C., Shahen, M., Paquin, N., Baula, M., Dawit, A., Yang, Z., et al., 2023. Chemgymrl: An interactive framework for reinforcement learning for digital chemistry. arXiv preprint arXiv:2305.14177.

Billard, A., Kragic, D., 2019. Trends and challenges in robot manipulation. Science 364 (6446), eaat8414. DOI: 10.1126/science.aat8414

Darvish, K., Skreta, M., Zhao, Y., Yoshikawa, N., Som, S., Bogdanovic, M., Cao, Y., Hao, H., Xu, H., Aspuru-Guzik, A., et al., 2025. Organa: a robotic assistant for automated chemistry experimentation and characterization. Matter 8 (2). DOI: 10.1016/j.matt.2024.10.015

Ekins, S., 2024. The lab of the future: Self-driving labs for molecule discovery. GEN Biotechnology 3 (2), 83–86. DOI: 10.1089/genbio.2024.29141.sek

European Council, 2019. European green deal. [Online] https://www.consilium.europa.eu/en/policies/european-green-deal/, accessed: 2025-05-29.

Huang, Y., Wilches, J., Sun, Y., 2021. Robot gaining accurate pouring skills through self-supervised learning and generalization. Robotics and Autonomous Systems 136, 103692.

Kemp, C. C., Edsinger, A., Torres-Jara, E., 2007. Challenges for robot manipulation in human environments [grand challenges of robotics]. IEEE Robotics & Automation Magazine 14 (1), 20–29.

Kennedy, M., Schmeckpeper, K., Thakur, D., Jiang, C., Kumar, V., Daniilidis, K., 2019. Autonomous precision pouring from unknown containers. IEEE Robotics and Automation Letters 4 (3), 2317–2324.

Martin, H. G., Radivojevic, T., Zucker, J., Bouchard, K., Sustarich, J., Peisert, S., Arnold, D., Hillson, N., Babnigg, G., Marti, J. M., et al., 2023. Perspectives for self-driving labs in synthetic biology. Current Opinion in Biotechnology 79, 102881.

Nakajima, Y., Hamaya, M., Suzuki, Y., Hawai, T., von Drigalski, F., Tanaka, K., Ushiku, Y., Ono, K., 2022. Robotic powder grinding with a soft jig for laboratory automation in material science. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 2320–2326.

Pizzuto, G., Wang, H., Fakhruldeen, H., Peng, B., Luck, K. S., Cooper, A. I., 2024. Accelerating laboratory automation through robot skill learning for sample scraping. In: 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE). IEEE, pp. 2103–2110.

Rahmanian, F., Flowers, J., Guevarra, D., Richter, M., Fichtner, M., Donnely, P., Gregoire, J. M., Stein, H. S., 2022. Enabling modular autonomous feedback-loops in materials science through hierarchical experimental laboratory automation and orchestration. Advanced Materials Interfaces 9 (8), 2101987. DOI: https://doi.org/10.1002/admi.202101987

Roch, L. M., Häse, F., Kreisbeck, C., Tamayo-Mendoza, T., Yunker, L. P. E., Hein, J. E., Aspuru-Guzik, A., 04 2020. Chemos: An orchestration software to democratize autonomous discovery. PLOS ONE 15 (4), 1–18. DOI: 10.1371/journal.pone.0229862

Tom, G., Schmid, S. P., Baird, S. G., Cao, Y., Darvish, K., Hao, H., Lo, S., Pablo-García, S., Rajaonson, E. M., Skreta, M., et al., 2024. Selfdriving laboratories for chemistry and materials science. Chemical Reviews 124 (16), 9633–9732.

Walters, W. P., Barzilay, R., 2021. Applications of deep learning in molecule generation and molecular property prediction. Accounts of Chemical Research 54 (2), 263–270, pMID: 33370107. DOI: 10.1021/acs.accounts.0c00699

Wang, Y. R., Zhao, Y., Xu, H., Eppel, S., Aspuru-Guzik, A., Shkurti, F., Garg, A., 2023. Mvtrans: Multi-view perception of transparent objects. In: 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3771–3778.

Xu, H.,Wang, Y. R., Eppel, S., Aspuru-Guzik, A., Shkurti, F., Garg, A., 2021. Seeing glass: joint point cloud and depth completion for transparent objects. arXiv preprint arXiv:2110.00087.

Downloads

Published

2025-09-01

Issue

Section

Robótica