Fish robot cabled teleoperation implemented on ROS 2
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12247Keywords:
Unmanned marine vehicles, Telerobotics, Mobile robots, Guidance, navigation and control, Embedded computer control systems and applications, Networked robotic systemsAbstract
This paper presents a cabled teleoperation system for an underwater robot using ROS 2 Humble.We implement a control node that emulates first-order velocity dynamics, by combining proportional acceleration and drag, and publishes PWM commands for speed, camera angle and electromagnet actuation. The user interface integrates ROS 2 teleoperation nodes with a joystick and real-time visualization tools. We validate the system in ten-minute pool trials, achieving directional stability, tracking error below 2 %, and latencies compatible with a 20 Hz control loop. These results lay a foundation for future extensions—bidirectional acoustic communication and high-fidelity simulation—aimed at enhancing autonomy and robustness in underwater teleoperation.
References
BlueRobotics, 2023. navigator-lib. https://github.com/bluerobotics/navigator-lib.
Gay, W., 2014. Raspberry Pi Hardware Reference. Springer. DOI: 10.1007/978-1-4842-0799-4
Kopman, V., Laut, J., Porfiri, M., Acquaviva, F., Rizzo, A., 2013. Dynamic modeling of a compliant tail-propelled robotic fish. IEEE Journal of Oceanic Engineering 40. DOI: 10.1115/DSCC2013-3787
Kruusmaa, M., Gkliva, R., Tuhtan, J. A., Tuvikene, A., Alfredsen, J. A., 2020. Salmon behavioural response to robots in an aquaculture sea cage. Royal Society Open Science 7, 191220. DOI: 10.1098/rsos.191220
Lauder, G., Tangorra, J., 2015. Fish Locomotion: Biology and Robotics of Body and Fin-Based Movements. pp. 25–49. DOI: 10.1007/978-3-662-46870-82
Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W., 2022. Robot operating system 2: Design, architecture, and uses in the wild. Science Robotics 7 (66), eabm6074. DOI: 10.1126/scirobotics.abm6074
Merkel, D., 2014. Docker: lightweight linux containers for consistent development and deployment. Linux Journal 2014 (239), 2.
Pino Jarque, A., Vidal, R., Tormos, E., Cerdá-Reverter, J. M., Marín-Prades, R., Sanz Valero, P. J., 2024. Towards fish welfare in the presence of robots: Zebrafish case. Journal of Marine Science and Engineering 12 (6), 932. DOI: 10.3390/jmse12060932
Triantafyllou, M., Triantafyllou, G., Yue, D., 01 2000. Hydrodynamics of fishlike swimming. annu rev fluid mech. Annual Review of Fluid Mechanics - ANNU REV FLUID MECH 32, 33–53. DOI: 10.1146/annurev.fluid.32.1.33
Xiong, G., Lauder, G. V., 2014. Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion. Zoology 117 (4), 269–281. DOI: 10.1016/j.zool.2014.03.002
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Max Puig Sariñena, Andrea Pino Jarque, Alejandro Solis Jiménez, Salvador López Barajas, Juan Jesús Echagüe Guardiola, Pedro J Sanz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.