Collaborative Marine Robotics: Exploring Scenarios with NauSim and YOLO
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12260Keywords:
Simulation, Unmanned marine vehicles, Multi-vehicle systems, Sensors and actuators, Robot Navigation, Programming and VisionAbstract
This work presents the results of tests with NauSim, an open source simulator for waterborne drones, together with the YOLO computer vision system in the context of collaborative robotics for the control and positioning of unmanned surface vehicles (USVs). Control algorithms for tasks such as formations, route following and obstacle avoidance are developed and tested in simulation and real scenarios. The results show remarkable overall system performance and good correspondence between simulation and reality, supporting the feasibility of the proposed system.
References
Amer, A., Álvarez-Tuñón, O., Ugurlu, H. I., Sejersen, J. L. F., Brodskiy, Y., Kayacan, E., 2023. Unav-sim: A visually realistic underwater robotics simulator and synthetic data-generation framework. In: 2023 21st International Conference on Advanced Robotics (ICAR). IEEE, pp. 570–576. DOI: 10.48550/arXiv.2310.11927
Barrera, C., Padron, I., Luis, F., Llinas, O., 2021. Trends and challenges in unmanned surface vehicles (usv): From survey to shipping. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation 15. DOI: 10.12716/1001.15.01.13
de Cerqueira Gava, P. D., Nascimento Júnior, C. L., Belchior de Franc¸a Silva, J. R., Adabo, G. J., 2022. Simu2vita: A general purpose underwater vehicle simulator. Sensors 22 (9), 3255. DOI: 10.3390/s22093255
Fossen, T. I., 2011. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons. DOI: 10.1002/9781119994138
Goslin, M., Mine, M. R., 2004. The panda3d graphics engine. Computer 37 (10), 112–114. DOI: 10.1109/MC.2004.180
Koubaa, A., Allouch, A., Alajlan, M., Javed, Y., Belghith, A., Khalgui, M., 2019. Micro air vehicle link (mavlink) in a nutshell: A survey. IEEE Access 7, 87658–87680. DOI: 10.1109/ACCESS.2019.2924410
Manhaes, M. M. M., Scherer, S. A., Voss, M., Douat, L. R., Rauschenbach, T., 2016. Uuv simulator: A gazebo-based package for underwater intervention and multi-robot simulation. In: OCEANS 2016 MTS/IEEE Monterey. Ieee, pp. 1–8. DOI: 10.1109/OCEANS.2016.7761080
Ortiz-Toro, C. A., Cerrada-Collado, C., Moreno-Salinas, D., Chaos-Garcia, D., Garcia-Suárez, K. L., Otero-Roth, P., Vidal-Perez, J. M., Luque- Nieto, M. A., Vázquez, A. I., Fraile-Ardanuy, J. J., Negro-Valdecantos, V., Jimenez-Yguacel, E., Aranda-Almansa, J., Zazo-Bello, S., Zufiria, P. J., Magdalena-Layos, L., Parras-Moral, J., Gutierrez, A., 2024. Exploring uuv development with nausim: An open-source simulation platform. In: 2024 Global Conference on Wireless and Optical Technologies (GCWOT). pp. 1–7. DOI: 10.1109/GCWOT63882.2024.10805602
Peng, Z.,Wang, J.,Wang, D., Han, Q.-L., 2020. An overview of recent advances in coordinated control of multiple autonomous surface vehicles. IEEE Transactions on Industrial Informatics 17 (2), 732–745. DOI: 10.1109/TII.2020.3004343
Potokar, E., Ashford, S., Kaess, M., Mangelson, J. G., 2022. Holoocean: An underwater robotics simulator. In: 2022 International Conference on Robotics and Automation (ICRA). IEEE, pp. 3040–3046. DOI: 10.1109/ICRA46639.2022.9812353
Prats, M., Perez, J., Fern´andez, J. J., Sanz, P. J., 2012. An open source tool for simulation and supervision of underwater intervention missions. In: 2012 IEEE/RSJ international conference on Intelligent Robots and Systems. IEEE, pp. 2577–2582. DOI: 10.1109/IROS.2012.6385788
Qiao, Y., Yin, J., Wang, W., Duarte, F., Yang, J., Ratti, C., 2023. Survey of deep learning for autonomous surface vehicles in marine environments. IEEE Transactions on Intelligent Transportation Systems 24 (4), 3678–3701. DOI: 10.1109/TITS.2023.3235911
Reynolds, C. W., 1987. Flocks, herds and schools: A distributed behavioral model. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques. pp. 25–34. DOI: 10.1145/37402.37406
Robotics, B., 2016. Bluerov2: The world’s most affordable high-performance rov. BlueROV2 Datasheet; Blue Robotics: Torrance, CA, USA. Varghese, R., Sambath, M., 2024. Yolov8: A novel object detection algorithm with enhanced performance and robustness. In: 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS). IEEE, pp. 1–6. DOI: 10.1109/ADICS58448.2024.10533619
von Benzon, M., Sørensen, F. F., Uth, E., Jouffroy, J., Liniger, J., Pedersen, S., 2022. An open-source benchmark simulator: Control of a bluerov2 underwater robot. Journal of Marine Science and Engineering 10 (12), 1898. DOI: 10.3390/jmse10121898
Wu, C.-J., 2018. 6-dof modelling and control of a remotely operated vehicle. Ph.D. thesis.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 César Antonio Ortiz Toro, Alvaro Gutiérrez Martín, Dictino Chaos García , Cristina Cerrada Collado, Miguel Ángel Luque Nieto, Mª Carmen Clemente Medina

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.