Modeling and Fuzzy Control of the Unimation PUMA 560 Shoulder Actuator Position

Authors

  • Alejandro Fernández-Infante Sánchez-Camacho Universidad Complutense de Madrid
  • Matilde Santos Universidad Complutense de Madrid
  • Jesus Enrique Sierra Garcia Universidad de Burgos

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12275

Keywords:

cascade control, fuzzy logic, PUMA 560 manipulator, F-PD+I controller, trajectory tracking

Abstract

This work investigates the position control of the Unimation PUMA 560 shoulder joint actuator using a cascaded control architecture, comprising an inner velocity control loop and an outer position control loop. A Mamdani-type fuzzy PD+I controller is implemented in the inner loop to avoid the complexity of a full fuzzy PID scheme rule set, while a linear proportional controller is employed in the outer loop. The system model captures key nonlinear behaviours arising from variable loads and friction. Simulations are conducted under both nominal conditions and a 20 N·m disturbance torque introduced to emulate gravitational effects, with tracking performance evaluated using a combination of time-domain metrics and quantitative indicators.

References

Alavandar, S. and Nigam, M. J. (2008). Fuzzy PD+I control of a six DOF robot manipulator. Industrial Robot: An International Journal, 35(2):125–132.

Bacac, N., Slukic, V., Puskaric, M., Stih, B., Kamenar, E., and Zelenika, S. (2014). Comparison of different DC motor positioning control algorithms. In 2014 37th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), pages 1654–1659. IEEE.

Barrientos, A., Pe˜nin, L. F., Balaguer, C., and Aracil, R. (2007). Fundamentos de robótica. McGraw-Hill, second edition.

Corke, P. I. (2007). Robotics, Vision and Control Fundamental Algorithms In MATLAB. Springer, second edition.

Corke, P. I. and Armstrong-Helouvry, B. (1994). A search for consensus among model parameters reported for the PUMA 560 robot. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pages 1608––1613. IEEE Comput. Soc. Press.

Lino, P., Konigsmarkova, J., and Maione, G. (2019). Feedback-Feedforward Position and Speed Control of DC Motors by Fractional-Order PI Controllers. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pages 2584–2589. IEEE.

Mamdani, E. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers, 121(12):1585.

Sierra-Garcia, J. E. and Santos, M. (2024). Agv fuzzy control optimized by genetic algorithms. Logic Journal of the IGPL, 32(6):955–970.

Singh, P., Kumar, V., and Rana, K. (2020). Speed Control of a Nonlinear DC Motor using Fuzzy PD + I Controller. In 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), pages 201–206. IEEE.

Tan, W., J. Marquez, H., and Chen, T. (2004). Performance Assessment of PID Controllers. Control and Intelligent Systems, 32(3).

Usoro, I. H., Itaketo, U. T., and Umoren, M. A. (2017). Control of a DC motor using fuzzy logic control algorithm. Nigerian Journal of Technology, 36(2):594.

Zadeh, L. A. (1996). Fuzzy sets, fuzzy logic, and fuzzy systems. Number v. 6 in Advances in fuzzy systems. World Scientific Pub. Co.

Downloads

Published

2025-09-01

Issue

Section

Control Inteligente