Control of an assistive device for disabled lower limb people

Authors

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12276

Keywords:

Biomechanics, orthosis, technical assistance, gait

Abstract

Lower limb disabilities severely affect mobility and quality of life. Biomedical engineering, especially through prostheses and exoskeletons controlled by EMG signals, offers promising solutions. This study focuses on the control of a knee orthopedic device based on PID and variant controllers, modeled in SolidWorks 2021 and Matlab/Simulink 2024b, considering biomechanical, mechanical and electrical aspects. PID, PI, and P control strategies are applied, together with an anti-windup mechanism to deal with saturation in the actuator, and an adaptive MRAC control. The performance of the different controllers is evaluated using the IAE index, highlighting that the best performance is obtained by the classic PID controller with anti-windup and MRAC with PID. analysis highlights the need for customized and efficient real-time solutions. Future research should address improved control, adaptability and computational feasibility in real environments, exploring technologies such as machine learning or neural networks. These developments are essential to improve the autonomy and safety of people with knee disabilities.

References

Aström, K. J., Hägglund, T., 1995. PID Controllers: Theory, Design, and Adjustment. 2ª ed. Instrument Society of America, Research Triangle Park.

Blanco-Ortega, A., Pérez-Vigueras, D., Antúnez-Leyva, E., Colín Ocampo, J., 2019. Controlador robusto para el seguimiento de trayectorias para un exoesqueleto de extremidades inferiores. Revista de Ingeniería Mecánica. DOI: 10.35429/JME.2019.11.3.1.8

García-Blancas, J., Domínguez-Ramírez, O., Rodríguez-Torres, E., Ramos-Velasco, L. E., 2022. Adaptabilidad en la tarea de control de exoesqueleto bípedo para fisioterapia asistida. PÄDI Boletín Científico de Ciencias Básicas e Ingenierías del ICBI. DOI:10.29057/icbi.v10iEspecial3.9014

Gómez-Espinosa, A., Blanco-Claraco, J. L., Gil, J. D., Moreno-Úbeda, J. C., 2025. Modelado de la marcha humana en MATLAB/Simulink Simscape Multibody para el diseño de una ortesis robótica de rodilla. Simposio CEA de Robótica, Bioingeniería, Visión Artificial y Automática Marina 2025 1. DOI: doi.org/10.64117/simposioscea.v1i1.55

Lora-Millán, J. S., Romero, A., Rocon, E., 2020. Diseño de una órtesis activa de rodilla para la evaluación de algoritmos de asistencia robótica en sujetos hemiparéticos. Actas de las XXXIX Jornadas de Automática. DOI: 10.17979/spudc.9788497497565.0057

Narendra, K. S., Annaswamy, A. M., 1984. Robust adaptive control. Proceedings of the American Control Conference. 1, 333–335. DOI:10.1007/978-3-319-56393-0_9

Pons, J. L., 2008. Wearable robots: biomechatronic exoskeletons. Springer, Londres.

Robertson, D. G. E., Caldwell, G. E., Hamill, J., Kamen, G., Whittlesey, S. N., 2014. Research methods in biomechanics. 2ª ed. Human Kinetics, Champaign.

Suberbiola, A., Zulueta, E., Lopez-Guede, J. M., Etxeberria-Agiriano, I., Graña, M., 2015. Arm orthosis/prosthesis movement control based on surface EMG signal extraction. International Journal of Neural Systems 25(3), 1550009. DOI: 10.1142/S0129065715500094

Stein, J., Narendran, K., McBean, J., Krebs, K., Hughes, R., 2007. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. American Journal of Physical Medicine & Rehabilitation 86(4), 255–261. DOI: 10.1097/PHM.0b013e3180383cc5

Tibaduiza-Burgos, D. A., Aya Parra, P. A., Anaya Vejar, M., 2019. Exoesqueleto para rehabilitación de miembro inferior con dos grados de libertad orientado a pacientes con accidentes cerebrovasculares. Inge-Cuc. DOI: 10.17981/ingecuc.15.2.2019.04

World Health Organization, World Bank, 2011. World Report on Disability. WHO, Geneva.

Downloads

Published

2025-09-01

Issue

Section

Robótica