Modelling a wood fiber flash dryer for MDF production

Authors

  • Saeed Rasekhi Universidad de Valladolid
  • Rogelio Mazaeda Universidad de Valladolid
  • Fernando Tadeo Universidad de Valladolid
  • Angel Garcia Bombin SONAE ARAUCO

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12115

Keywords:

Modeling of manufacturing operations, Simulation and visualization, Grey box modelling, Digital implementation, Process optimization

Abstract

This work presents a dynamic model for the wood fiber drying process in a medium-density fiberboard (MDF) production line. The model focuses on the convective drying stage within a pneumatic flash dryer, where moisture and heat are exchanged between moving fibers and the air stream. We use a one-dimensional, spatially distributed model to capture heat and mass transfer dynamics. The model integrates thermophysical properties of humid air and wet fibers, nonlinear empirical correlations, and a humidity-dependent drying coefficient inspired by prior studies. Implemented in Python, the system of partial differential equations is numerically solved using the method of lines and the backward-differentiation formulas solver. This work is part of a broader industrial digital twin initiative at Universidad de Valladolid, aimed at anomaly detection, energy optimization, and prescriptive analytics.

References

ASHRAE, 2017. ASHRAE handbook – fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA.

Bejan, A., Kraus, A. D., 2003. Heat transfer handbook. Wiley, Hoboken, NJ.

Bird, R. B., Stewart, W. E., Lightfoot, E. N., 2002. Transport phenomena, 2nd ed. Wiley, New York.

Churchill, S. W., Bernstein, M., 1977. A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. Journal of Heat Transfer 99(2), 300–306. https://doi.org/10.1115/1.2134480

Dietenberger, M. A., 2002. A comprehensive model for the thermophysical properties of wood. Wood and Fiber Science 34(4), 690–703.

G. D. Byrne, A. C. Hindmarsh, 1975. A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations. ACM Transactions on Mathematical Software, Vol. 1, No. 1, pp. 71-96.

Incropera, F. P., DeWitt, D. P., 2007. Fundamentals of heat and mass transfer, 6th ed. Wiley, Hoboken, NJ.

Moran, M. J., Shapiro, H. N., 2010. Fundamentals of engineering thermodynamics, 7th ed. Wiley, Hoboken, NJ.

Pang, S., 2001. Improving MDF fiber drying operation by application of a mathematical model. Drying Technology 19(8), 1789–1805. https://doi.org/10.1081/DRT-100107273

Perry, R. H., Green, D. W., 1984. Perry’s chemical engineers’ handbook, 6th ed. McGraw-Hill, New York.

Reid, R. C., Prausnitz, J. M., Poling, B. E., 1987. The properties of gases and liquids, 4th ed. McGraw-Hill, New York.

Santos, P., Pitarch, J. L., de Prada, C., 2019. Energy-efficient operation of a medium-density fibreboard dryer through nonlinear MPC. IFAC-PapersOnLine 52(1), 400–405. https://doi.org/10.1016/j.ifacol.2019.06.093

Santos, P., Pitarch, J. L., Vicente, A., de Prada, C., García, Á., 2020. Improving operation in an industrial MDF flash dryer through physics-based NMPC. Control Engineering Practice 94, 104213. https://doi.org/10.1016/j.conengprac.2019.104213

VDI, 2010. VDI Heat Atlas, 2nd ed. Springer-Verlag, Berlin.

White, F. M., 2006. Viscous fluid flow, 3rd ed. McGraw-Hill, New York.

Downloads

Published

2025-09-01

Issue

Section

Modelado, Simulación y Optimización