Communication Strategies for Social Multi-Robot Systems Using ROS

Authors

  • Guillermo Arturo Arrojo Fuentes UC3M
  • Sara Carrasco Martínez UC3M
  • José Carlos Castillo Montoya UC3M
  • María Ángeles Malfaz Vázquez UC3M

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12212

Keywords:

Social Robotics, Robot–Robot Interaction, Multi-Robot, ROS, Topics, Communication Strategy

Abstract

In multi-robot systems, communication is the foundation for a successful interaction. Coordinating multiple social robots in a shared environment requires effective interaction. However, multi-robot architectures often face issues with synchronization, scalability, and identifying the source of each message. This paper analyzes four multi-robot communication strategies based on ROS and implemented on the social robot Mini. Our contribution explores the following options: (i) a shared namespace that ensures synchronization but limits individual autonomy; (ii) isolated namespaces with point-to-point messaging—simple to implement but poorly scalable; (iii) a global namespace where topics are tagged by sender, enabling dynamic adaptation and sender identification at the cost of increased receiver complexity; and (iv) a simplified variant using a single global topic plus an auxiliary channel for sender ID, which reduces complexity but requires coherence mechanisms. Through quantitative and qualitative evaluation, we find that strategy (iii), thanks to its flexibility and automatic adaptation to changing groups, is particularly well suited to dynamic social-robotics environments.

References

Abdulrahman, T., Isiwekpeni, O., Surajudeen-Bakinde, N., Otuoze, A., 2016. Design, specification and implementation of a distributed home automation system. Procedia Computer Science 94, 473–478, the 11th International Conference on Future Networks and Communications (FNC 2016) / The 13th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2016) / Affiliated Workshops. DOI: https://doi.org/10.1016/j.procs.2016.08.073

Arrojo Fuentes, G. A., Borrero, J., García Martínez, J., Castillo, J. C., Castro-González, Á., Salichs, M. Á., 2023. Integracio´n en robot social mini del juego”veo, veo”. In: XLIV Jornadas de Automática. Universidade da Coruña. Servizo de Publicacións, pp. 501–506.

Berson, A., 1992. Client/server architecture. McGraw-Hill, Inc., USA. Brambilla, M., Nicoli, M., Soatti, G., Deflorio, F., 2020. Augmenting vehicle localization by cooperative sensing of the driving environment: Insight on data association in urban traffic scenarios. IEEE Transactions on Intelligent Transportation Systems 21 (4), 1646–1663. DOI: 10.1109/TITS.2019.2941435

Burgard, W., Moors, M., Stachniss, C., Schneider, F., 2005. Coordinated multi-robot exploration. IEEE Transactions on Robotics 21 (3), 376–386. DOI: 10.1109/TRO.2004.839232

Cao, Y. U., Fukunaga, A. S., Kahng, A., 1997. Cooperative mobile robotics: Antecedents and directions. Autonomous robots 4, 7–27. Habermas, J., 1991. The structural transformation of the public sphere: An inquiry into a category of bourgeois society. MIT press.

Innis, H. A., 1949. The bias of communication. Canadian Journal of Economics and Political Science 15 (4), 457–476. DOI: 10.2307/138041

Kalita, L., 2014. Socket programming. International Journal of Computer Science and Information Technologies 5 (3), 4802–4807.

Lasswell, H. D., 1948. The structure and function of communication in society. In: Bryson, L. (Ed.), The communication of ideas. Harper and Row, New York, pp. 37–51.

Lonvick, C. M., Ylonen, T., Jan. 2006. The Secure Shell (SSH) Protocol Architecture. Tech. Rep. 4251, Internet Engineering Task Force. DOI: 10.17487/RFC4251

Marvel, J. A., Bostelman, R., Falco, J., Jan. 2018. Multi-robot assembly strategies and metrics. ACM Comput. Surv. 51 (1). DOI: 10.1145/3150225

Rane, P., Mhatre, V., Kurup, L., 2014. Study of a home robot: Jibo. International journal of engineering research and technology 3 (10), 490–493. Salichs, M. A., Castro-González, Á., Salichs, E., Fernández-Rodicio, E.,

Maroto-Gómez, M., Gamboa-Montero, J. J., Marques-Villarroya, S., Castillo, J. C., Alonso-Martín, F., Malfaz, M., dec 2020. Mini: A New Social Robot for the Elderly. International Journal of Social Robotics 12 (6), 1231–1249. DOI: 10.1007/s12369-020-00687-0

Shannon, C. E., 1948. A mathematical theory of communication. The Bell System Technical Journal 27 (3), 379–423. DOI: 10.1002/j.1538-7305.1948.tb01338.x

Skorobogatov, G., Barrado, C., Salamí, E., 2020. Multiple uav systems: A survey. Unmanned Systems 08 (02), 149–169. DOI: 10.1142/S2301385020500090

Takayanagi, K., Kirita, T., Shibata, T., sep 2014. Comparison of verbal and emotional responses of elderly people with mild/moderate dementia and those with severe dementia in responses to seal robot, PARO. Frontiers in Aging Neuroscience 6 (SEP), 257. DOI: 10.3389/fnagi.2014.00257

Yan, Z., Jouandeau, N., Cherif, A. A., 2013. A survey and analysis of multirobot coordination. International Journal of Advanced Robotic Systems 10 (12), 399. DOI: 10.5772/57313

Downloads

Published

2025-09-01

Issue

Section

Robótica