Main Article Content

Blanca Viridiana Alcantar González
Universidad Nacional Autónoma de México
Mexico
Xóchitl Trujillo
Universidad de Colima, Centro Universitario de Investigaciones Biomédicas, Laboratorio de Fisiología Neuromuscular México
Mexico
Miguel Huerta
Universidad de Colima, Centro Universitario de Investigaciones Biomédicas, Laboratorio de Fisiología Neuromuscular México
Mexico
Vol. 3 No. 3 (2017), Original papers, pages 471-485
DOI: https://doi.org/10.17979/sportis.2017.3.3.1825
Submitted: Oct 6, 2016 Accepted: Jul 9, 2017 Published: Aug 29, 2017
How to Cite

Abstract

Tissue glucose requirements augment during exercise, particularly in skeletal muscle. Glucose levels rise during moderate intensity exercise (60-75% VO2máx) due to an increase in the glucagon-insulin relationship (Engler, 2006). In this study we determined the effect of aerobic resistance exercise during four weeks on the body weight and blood sugar levels of Wistar rats. Experimental animals received training in a treadmill (Modular Enclosed Treadmill; Columbus Instrument, Columbus, OH, USA) with zero degrees of inclination and a 10 mV electric device incorporated. The exercise protocol was applied in 30 min sessions per day at a velocity of 10 m/min. with a frequency of 5 times a week for 4 weeks. Body weights and blood sugar levels were measured. At 12 hour fasting oral glucose tolerance curve (OGTC) was performed before and after the 4 weeks of exercise. The differences between the groups were analyzed using Student´s t tests, a p ≤ 0.05 was considered significant. After 4 weeks of training, the groups showed no significant differences in their body weights 262.0 ± 31.78 at the beginning, and 292.01 ± 35.62 g at the end of 4 weeks in the control group vs. 282.75 ± 25.91 g at the beginning, and 301.47 ± 31.38 g at the end of 4 weeks in the trained rats; p > 0.05). Similarly, blood glucose levels before and after 4 weeks of application of the exercise protocol were not significantly modified between the groups (73.5 ± 3.8 and 83.5 ± 2.38 g/dL in control group vs. 91.0 ± 7.43 and 85.7 ± 7.0 g/dL in the trained animals; p > 0.05). Likewise, the OGTC was comparable in both groups, before and after the application of the exercise protocol.

Downloads

Download data is not yet available.

Article Details

References

Allen DG, Orchard CH. (1987). Myocardial contractile function during ischemia and hypoxia. Circulation Research, 60(2), 153-168. http://circres.ahajournals.org/cgi/content/abstract/60/2/153

Álvarez-Berta, L. M., Maharjan, D., Mateos-Padorno, C., & Sánchez, M. L. Z. (2016). El entrenamiento especial del boxeo escolar cubano y sus zonas afectadas. Sportis. Scientific Journal of School Sport, Physical Education and Psychomotricity, 2(2), 288-302. http://revistas.udc.es/index.php/SPORTIS/article/view/sportis.2016.2.2.1458

Eckardt, K., Görgens, S. W., Raschke, S., & Eckel, J. (2014). Myokines in insulin resistance and type 2 diabetes. Diabetologia, 57(6), 1087-1099.

Eddinger, T. J., Moss, R. L., & Cassens, R. G. (1985). Fiber number and type composition in extensor digitorum longus, soleus, and diaphragm muscles with aging in Fisher 344 rats. Journal of Histochemistry & Cytochemistry, 33(10), 1033-1041. http://www.jhc.org/cgi/content/abstract/33/10/1033

Engler, D. (2006). Hypothesis: Musculin is a hormone secreted by skeletal muscle, the body's largest endocrine organ. Evidence for actions on the endocrine pancreas to restrain the beta-cell mass and to inhibit insulin secretion and on the hypothalamus to co-ordinate the neuroendocrine and appetite responses to exercise. Acta Bio-Medica: Atenei Parmensis, 78, 156-206.

Febbraio MA, Pedersen BK (2005) Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev, 33:114–119.

Guyton, A. C., & Hall, J.E. (2001). Tratado de Fisiología médica. c, 82, 894.

Gibbs CL (1987). Comparative muscle energetics and the cost of activation. Proc Austr Physiol Pharmac Soc 18, 115–123

Hall-López, J. A., Ochoa-Martínez, P. Y., Alarcón-Meza, E. I., Anaya-Jaramillo, F. I., Teixeira, A. M. M. B., Moncada-Jiménez, J., & Dantas, E. H. M. (2014). Effect of a hydrogymnastics program on the serum levels of high-sensitivity C-reactive protein amongst elderly women. Health, 2014.

Huang, T.H., Chang, F.L., Lin, S.C., Liu, S.H., Hsieh, S.S., Yang, R.S. (2008). Endurance treadmill running training benefits the biomaterial quality of bone in growing maleWistar rats. J Bone Miner Metab, 26(4):350-357.

Mexicana, N. O. 062-ZOO-1999. Especificaciones Técnicas para la producción, cuidado y uso de los animales de laboratorio. Secretaría de Agricultura, Ganadería. Desarrollo Rural, Pesca y Alimentación. Estados Unidos Mexicanos.

Mikus, C.R., Oberlin, D.J., Libla, J., Boyle L.J., & Thyfault, J.P. (2012). Glycaemic control is improved by 7 days of aerobic exercise training in patients with type 2 diabetes. Diabetología, 55(5):1417-1423.

Muñiz, J., Del Rio, J., Huerta, M. & Marin, J.L. (2001). Effects of sprint and endurance training on passive stress-strain relation of fast- and slow-twitch skeletal muscle in Wistar rat. Acta Physiologica Scandinavica, 173(2):207-12.

Ochoa-Martínez, P. Y., Hall-López, J. A., Alarcón-Meza, E., Rentería, I., Botelho Teixeira, A. M. M., Lara-Zazueta, H., & Martin Dantas, E. H. (2012). Comparison of Agility and Dynamic Balance in Elderly Women with Endomorphic Mesomorph Somatotype with Presence or Absence of Metabolic Syndrome. International Journal Morphology, 30(2), 637-42.

Organización Mundial de la Salud. Informe Mundial Sobre la Diabetes. www.who.int/diabetes/global-report. WHO/NMH/NVI/16.3, 2016.

Ribeiro, S.M., Rogero, M.M., Bacurau, R.F., De Campos, P.L., Luz, SS., Lancha, A.H. & Tirapegui, J. (2010). Effects of different levels of protein intake and physical training on growth and nutritional status of young rats. Journal Nutrition Science Vitaminology, 56(3):177-84.

Ríos-Silva, M., Trujillo, X., Trujillo-Hernández, B., Sánchez-Pastor, E., Urzúa, Z., Mancilla, E., Huerta, M. (2014). Effect of chronic administration of forskolin on glycemia and oxidative stress in rats with and without experimental diabetes. International Journal of Medical Sciences, 1(5):448-52.

Rodríguez, B. O., Fierro, L. G. D. L., & Legleu, C. E. C. (2015). Indicadores antropométricos y su relación con marcadores bioquímicos en mujeres. Nutrición Hospitalaria, 32(n06), 2547-2550. http://www.aulamedica.es/gdcr/index.php/nh/article/view/9743

Shafrir, E., Ziv, E., & Mosthaf, L. (1999). Nutritionally Induced Insulin Resistance and Receptor Defect Leading to β‐Cell Failure in Animal Models. Annals of the New York Academy of Sciences, 892(1), 223-246.

Silva-Moreira, M., Almeida, G. N., & Marinho, S. M. (2016). Efectos de un programa de Psicomotricidad Educativa en niños en edad preescolar. Sportis. Scientific Journal of School Sport, Physical Education and Psychomotricity, 2(3), 326-342. http://revistas.udc.es/index.php/SPORTIS/article/view/sportis.2016.2.3.1563

Virgen-Ortiz, A., Marin, J. L., Trujillo, X., Huerta, M., & Muñiz, J. (2008). Sprint training attenuates the deficits of force and dynamic stiffness in rat soleus muscle caused by eccentric contractions. Journal of biomechanics, 41(11), 2533-2538.

Yamaguchi, W., Fujimoto, E., Higuchi, M., & Tabata, I. (2010). A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle. Journal of biochemistry, 148(3), 327-333.