Inteligencia artificial y enseñanza en Ingeniería: una revisión sistemática de la literatura

Autores/as

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12180

Palabras clave:

Educación Superior, Enseñanza, Ingeniería, Inteligencia Artificial Generativa

Resumen

La llegada de la Inteligencia Artificial Generativa (GenAI) a la educación ha supuesto el inicio de una nueva revolución educativa, generando la necesidad de evaluar tanto sus beneficios, como los posibles desafíos en la formación de los futuros profesionales. Esta investigación tiene como objetivo analizar las experiencias educativas que han introducido esta tecnología en la educación superior de Ingeniería, para conocer su proceso de integración, sus potenciales y principales desafíos. A partir de una revisión sistemática de la literatura, se concluye que la GenAI destaca por su capacidad de adaptarse a las características del alumnado. Sin embargo, su uso en la enseñanza de Ingeniería avanza lentamente, evidenciando la necesidad de integración efectiva en los planes de estudio, para promover buenas prácticas de uso y contribuir al avance de la sociedad.

Referencias

Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology: Theory and Practice, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616

Baker, J. D. (2016). The Purpose, Process, and Methods of Writing a Literature Review. AORN Journal, 103(3), 265–269. https://doi.org/10.1016/j.aorn.2016.01.016

Bernabei, M., Colabianchi, S., Falegnami, A., & Costantino, F. (2023). Students’ use of large language models in engineering education: A case study on technology acceptance, perceptions, efficacy, and detection chances. Computers and Education: Artificial Intelligence, 5(October), 100172. https://doi.org/10.1016/j.caeai.2023.100172

Bobula, M. (2024). Generative artificial intelligence (AI) in higher education: a comprehensive review of challenges, opportunities, and implications. Journal of Learning Development in Higher Education, 30. https://doi.org/10.47408/jldhe.vi30.1137

Borges, B., Foroutan, N., Bayazit, D., Sotnikova, A., Montariol, S., Nazaretzky, T., Banaei, M., Sakhaeirad, A., Servant, P., Neshaei, S. P., Frej, J., Romanou, A., Weiss, G., Mamooler, S., Chen, Z., Fan, S., Gao, S., Ismayilzada, M., Paul, D., … Bosselut, A. (2024). Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants. 1(49), 1–9. https://doi.org/10.1073/pnas.2414955121/-/DCSupplemental.Published

Caccavale, F., Gargalo, C. L., Gernaey, K. V., & Krühne, U. (2024). Towards Education 4.0: The role of Large Language Models as virtual tutors in chemical engineering. Education for Chemical Engineers, 49(July), 1–11. https://doi.org/10.1016/j.ece.2024.07.002

Ciolacu, M. I., Marghescu, C., Mihailescu, B., & Svasta, P. (2024). Does Industry 5.0 Need an Engineering Education 5.0? Exploring Potentials and Challenges in the Age of Generative AI. IEEE Global Engineering Education Conference, EDUCON, 1–10. https://doi.org/10.1109/EDUCON60312.2024.10578712

Cui, Y., Chen, F., & Shiri, A. (2020). Scale up predictive models for early detection of at-risk students: a feasibility study. Information and Learning Science, 121(3–4), 97–116. https://doi.org/10.1108/ILS-05-2019-0041

Fernández, L. R., Laura, A., Mena, F., Patricia, M., Magaña, T., Antonio, M., Magaña, R., Antonio, M., & Fernández, R. (2024). INTELIGENCIA ARTIFICIAL EN LA EDUCACION : MODELO DE LENGUAJE DE GRAN TAMAÑO ( LLM ) COMO RECURSO EDUCATIVO ARTIFICIAL INTELLIGENCE IN EDUCATION : LARGE LANGUAGE MODEL ( LLM ) AS AN EDUCATIONAL RESOURCE. Llm, 157–164.

García-Peñalvo, F., & Vázquez-Ingelmo, A. (2023). What Do We Mean by GenAI? A Systematic Mapping of The Evolution, Trends, and Techniques Involved in Generative AI. International Journal of Interactive Multimedia and Artificial Intelligence, 8(4), 7. https://doi.org/10.9781/ijimai.2023.07.006

Garg, A., Nisumba Soodhani, K., & Rajendran, R. (2025). Enhancing data analysis and programming skills through structured prompt training: The impact of generative AI in engineering education. Computers and Education: Artificial Intelligence, 8(October 2024), 100380. https://doi.org/10.1016/j.caeai.2025.100380

Iosup, A., & Epema, D. (2014). An experience report on using gamification in technical higher education. SIGCSE 2014 - Proceedings of the 45th ACM Technical Symposium on Computer Science Education, 2008, 27–32. https://doi.org/10.1145/2538862.2538899

Keith, M., Keiller, E., Windows-Yule, C., Kings, I., & Robbins, P. (2025). Harnessing generative AI in chemical engineering education: Implementation and evaluation of the large language model ChatGPT v3.5. Education for Chemical Engineers, 51(July 2024), 20–33. https://doi.org/10.1016/j.ece.2025.01.002

King, M. R., Abdulrahman, A. M., Petrovic, M. I., Poley, P. L., Hall, S. P., Kulapatana, S., & Lamantia, Z. E. (2024). Incorporation of ChatGPT and Other Large Language Models into a Graduate Level Computational Bioengineering Course. Cellular and Molecular Bioengineering, 17(1), 1–6. https://doi.org/10.1007/s12195-024-00793-3

Knoth, N., Tolzin, A., Janson, A., & Leimeister, J. M. (2024). AI literacy and its implications for prompt engineering strategies. Computers and Education: Artificial Intelligence, 6(December 2023), 100225. https://doi.org/10.1016/j.caeai.2024.100225

Menekse, M. (2023). Envisioning the future of learning and teaching engineering in the artificial intelligence era: Opportunities and challenges. Journal of Engineering Education, 112(3), 578–582. https://doi.org/10.1002/jee.20539

Obster, F., Brand, J., Ciolacu, M., & Humpe, A. (2023). Improving Boosted Generalized Additive Models with Random Forests: A Zoo Visitor Case Study for Smart Tourism. Procedia Computer Science, 217, 187–197. https://doi.org/10.1016/j.procs.2022.12.214

Peláez-Sánchez, I. C., Velarde-Camaqui, D., & Glasserman-Morales, L. D. (2024). The impact of large language models on higher education: exploring the connection between AI and Education 4.0. Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1392091

Pesovski, I., Santos, R., Henriques, R., & Trajkovik, V. (2024). Generative AI for Customizable Learning Experiences. Sustainability (Switzerland) , 16(7), 1–23. https://doi.org/10.3390/su16073034

Sawalha, G., Taj, I., & Shoufan, A. (2024). Analyzing student prompts and their effect on ChatGPT’s performance. Cogent Education, 11(1). https://doi.org/10.1080/2331186x.2024.2397200

Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., Altman, D. G., Booth, A., Chan, A. W., Chang, S., Clifford, T., Dickersin, K., Egger, M., Gøtzsche, P. C., Grimshaw, J. M., Groves, T., Helfand, M., … Whitlock, E. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ (Online), 349(January), 1–25. https://doi.org/10.1136/bmj.g7647

Shen, Y. (2024). Future jobs: analyzing the impact of artificial intelligence on employment and its mechanisms. Economic Change and Restructuring, 57(2), 34. https://doi.org/10.1007/s10644-024-09629-6

Soboleva, E. V., Gorev, P. M., Shadrina, N. N., & Shilova, Z. V. (2024). Using generative neural networks when training digital engineers to improve the quality of their training. Perspektivy Nauki i Obrazovania, 71(5), 662–679. https://doi.org/10.32744/pse.2024.5.39

Song, T., Zhang, H., & Xiao, Y. (2024). A High-Quality Generation Approach for Educational Programming Projects Using LLM. IEEE Transactions on Learning Technologies, 17, 2242–2255. https://doi.org/10.1109/TLT.2024.3499751

Viveros-Muñoz, R., Carrasco-Sáez, J., Contreras-Saavedra, C., San-Martín-Quiroga, S., & Contreras-Saavedra, C. E. (2025). Does the Grammatical Structure of Prompts Influence the Responses of Generative Artificial Intelligence? An Exploratory Analysis in Spanish. Applied Sciences (Switzerland), 15(7), 1–20. https://doi.org/10.3390/app15073882

Wang, X., Chan, T. M., & Tamura, A. A. (2025). A learning module for generative AI literacy in a biomedical engineering classroom. Frontiers in Education, 10(March), 1–7. https://doi.org/10.3389/feduc.2025.1551385

Yik, B. J., & Dood, A. J. (2024). ChatGPT Convincingly Explains Organic Chemistry Reaction Mechanisms Slightly Inaccurately with High Levels of Explanation Sophistication. Journal of Chemical Education, 101(5), 1836–1846. https://doi.org/10.1021/acs.jchemed.4c00235

Descargas

Publicado

01-09-2025

Número

Sección

Educación en Automática