Relationship among anthropometric profile, vo2max and power output in road and track cyclists; a narrative revision
Main Article Content
Abstract
performance and the impact that the anthropometry of the individual can have on this sport should be considered as a training strategy. The objective was to analyze the relationship between anthropometric profile and performance in track and road cyclists, with a focus on how these characteristics are associated with maximal oxygen uptake (VO2max), absolute and relative power, and aerodynamic efficiency. A comprehensive literature review was conducted in academic databases including PubMed, Scopus and Google Scholar. The search strategy was worked with the terms “anthropometric profile,” “track cyclists,” “road cyclists,” “maximal oxygen consumption,” “power output” and “sports performance.” The search was restricted to studies published between 1987 and 2022 to ensure inclusion of current research. Articles in English and Spanish were reviewed to cover as much of the available literature on the topic as possible. In total, 24 articles were analyzed that provided a comprehensive view of anthropometric variables and their influence on cyclists' performance. For track cyclists, the development of muscle mass in the legs is fundamental to generate explosive power in sprints and short races, requiring high-intensity exercises. In contrast, for road cyclists, a high VO2max and low body fat percentage are key to performance in long races, and it is crucial to combine aerobic training with strategies to improve power-to-weight ratio and aerodynamic efficiency
Keywords:
Downloads
Article Details
References
Ariza, H. H. L., Rosas, D. A. B., & Melo, C. E. (2013). Comparación de las características antropométricas entre ciclistas de pista y ruta. Journal of Sports Science and Medicine, 12(4), 567-575.
Arriel, R. A., Graudo, J. A., Oliveira, J. L. D. D., Ribeiro, G. G. S., Meireles, A., & Marocolo, M. (2020). The relative peak power output of amateur mountain bikers is inversely correlated with body fat but not with fat-free mass. Motriz: Revista de Educação Física, 26(3), e10200034. https://doi.org/10.1590/S1980-6574202000030034
Arriel, R. A., Souza, H. L., Sasaki, J. E., & Marocolo, M. (2022). Current perspectives of cross-country mountain biking: physiological and mechanical aspects, evolution of bikes, accidents and injuries. International journal of environmental research and public health, 19(19), 12552. https://doi.org/10.3390/ijerph191912552
Barbero-Alvarez, J. C., Arroyo, D., Díez, A., & Aceña, M. (2010). Explosive leg strength and muscle mass as determinants of sprint performance in elite cyclists. Journal of Sports Sciences, 28(9), 899-906. https://doi.org/10.1080/02640411003770231
Bassett, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32(1), 70-84. https://doi.org/10.1097/00005768-200001000-00012
Bompa, T. O., & Carrera, M. (2005). Periodization training for sports (2.ª ed.). Human Kinetics.
Bourgois, J., & Vrijens, J. (2000). Anthropometric characteristics of elite male junior rowers. Journal of Sports Sciences, 18(7), 519-529. https://doi.org/10.1080/02640410050074960
Brooke-Wavell, K., & Jones, P. R. (1994). Effects of physical training on bone density in premenopausal women: A comparative study. Journal of Bone and Mineral Research, 9(10), 1409-1415. https://doi.org/10.1002/jbmr.5650091008
Brunkhorst, L., & Kielstein, H. (2013). Comparison of anthropometric characteristics between professional triathletes and cyclists. Biology of sport, 30(4), 269-273.
Chen, J. K., Chen, T. W., Chen, C. H., & Huang, M. H. (2009). Oxygen uptake for cycling in relation to body composition: a pilot study. The Kaohsiung Journal of Medical Sciences, 25(10), 544-551.
Coutts, A. J., Reaburn, P., Piva, T. J., & Rowsell, G. J. (2007). Monitoring for overreaching in rugby league players. European Journal of Applied Physiology, 99(3), 313-324. https://doi.org/10.1007/s00421-006-0345-z
Craig, N. P., Norton, K. I., Bourdon, P. C., & Woolford, S. M. (1995). Characteristics of track cycling sprinters. Journal of Applied Physiology, 78(5), 123-130. https://doi.org/10.1152/jappl.1995.78.5.123
Craig, N. P., & Norton, K. I. (2007). Characteristics of track cycling. Sports Medicine, 37(7), 531-543.
Crouch, T. N., Burton, D., LaBry, Z. A., Blair, K. B., & Sheridan, J. (2017). Riding against the wind: A review of competition cycling aerodynamics. Sports Engineering, 20(2), 81-110. https://doi.org/10.1007/s12283-017-0234-1
Denadai, B. (1999) Índices fisiológicos de avaliação aeróbia: conceitos e aplicações. 1st ed. São Paulo: B.S.D.
Dorel, S., Hautier, C. A., Rambaud, O., & Couturier, A. (2005). Torque and power-velocity relationships in cycling: Relevance to track sprint performance in world-class cyclists. International Journal of Sports Medicine, 26(9), 739-746. https://doi.org/10.1055/s-2004-830514
Engelbrecht, L., & Terblanche, E. (2017). Physiological performance predictors in mountain bike multi-stage races. The Journal of Sports Medicine and Physical Fitness, 58(7-8), 951-956. https://doi.org/10.23736/s0022-4707.17.07139-0
Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The science of cycling: Factors affecting performance – Part 2. Sports Medicine, 35(4), 313-337. https://doi.org/10.2165/00007256-200535040-00002
García-López, J., Peleteiro, J., de Paz, J. A., & Garrido, J. J. (2016). Anthropometric and physiological determinants of sprint performance in elite track cyclists. Journal of Sports Sciences, 34(3), 219-225. https://doi.org/10.1080/02640414.2015.1039460
García-López, J., Rodríguez-Marroyo, J. A., Juneau, C. E., Peleteiro, J., Martínez, A. C., & Villa, J. G. (2008). Reference values and improvement of aerodynamic drag in professional cyclists. European Journal of Applied Physiology, 103(5), 667-677. https://doi.org/10.1007/s00421-008-0761-7
Haakonssen, E. C., Barras, M., Burke, L. M., & Jenkins, D. G. (2013). Body composition of female road and track endurance cyclists: Implications for performance. Journal of Sports Sciences, 31(4), 398-404. https://doi.org/10.1080/02640414.2012.736628
Hue, O., Chamari, K., Damiani, M., Blonc, S., & Hertogh, C. (2007). The use of an eccentric chainring during an outdoor 1 km all-out cycling test. Journal of Science and Medicine in Sport, 10(3), 180-186.
Impellizzeri, F. M., Ebert, T., Sassi, A., Menaspà, P., Rampinini, E., & Martin, D. T. (2008). Level ground and uphill cycling ability in elite female mountain bikers and road cyclists. European Journal of Applied Physiology, 102(3), 335-341. https://doi.org/10.1007/s00421-007-0590-9
Jeukendrup, A. E. (2010). Sport nutrition: An introduction to energy production and performance (2nd ed.). Human Kinetics.
Jobson, S. A., Hopker, J., & Passfield, L. (2009). Lower limb muscle activity during standing and seated cycling. Journal of Sports Sciences, 27(11), 1169-1177. https://doi.org/10.1080/02640410903197838
Jones, A. M., & Carter, H. (2000). The effect of endurance training on parameters of aerobic fitness. Sports Medicine, 29(6), 373-386. https://doi.org/10.2165/00007256-200029060-00001
Knechtle, B., & Kohler, G. (2007). Running performance, body composition, and training in male ultramarathoners. Research in Sports Medicine, 15(4), 257-274. https://doi.org/10.1080/15438620701693200
Lucía, A., Hoyos, J., Santalla, A., & Pérez, M. (2000). Physiological characteristics of the best Eritrean runners-exceptional endurance capabilities. British Journal of Sports Medicine, 34(1), 67-70. https://doi.org/10.1136/bjsm.34.1.67
Lucia, A., Joyos, H., & Chicharro, J. L. (2000). Physiological response to professional road cycling: climbers vs. time trialists. International Journal of Sports Medicine, 21(07), 505-512. https://doi.org/10.1055/s-2000-7420
McLean, B. D., Gore, C. J., & Kemp, J. (2014). Application of ‘live high–train low’ altitude training among world-class track and field athletes. International Journal of Sports Physiology and Performance, 9(5), 1038-1051. https://doi.org/10.1123/ijspp.2013-0319
Menaspà, P., Rampinini, E., Bosio, A., Carlomagno, D., Riggio, M., & Sassi, A. (2012). Physiological and anthropometric characteristics of junior cyclists of different specialties and performance levels. Scandinavian Journal of Medicine & Science in Sports, 22(3), 392-398.
Méndez, H. R., Murillo, M. A. M., Sánchez-Ureña, B., Rivera, E. C., & Ramírez, F. A. (2018). Determinación de las características antropométricas y consumo máximo de oxígeno del ciclista élite costarricense según especialidad y tipo de prueba. MHSalud, 14(2), 1-13.
Morales, C., Osorio, J., Flores, E., & Maureira, F. (2023). Independencia del perfil antropométrico, atención e inteligencia en estudiantes de educación superior en el ámbito de actividad física de Chile. NutrHosp, 1246-1252.
Moro, V. L., Gheller, R. G., Berneira, J. D. O., Hoefelmann, C. P., Karasiak, F. C., Moro, A. R. P., & Diefenthaeler, F. (2013). Comparison of body composition and aerobic and anaerobic performance between competitive cyclists and triathletes. Revista Brasileira de Cineantropometria & Desempenho Humano, 15, 646-655. https://doi.org/10.1590/1980-0037.2013v15n6p646
Mujika, I., & Padilla, S. (2001). Physiological and performance characteristics of male professional road cyclists. Sports Medicine, 31(7), 479-487. https://doi.org/10.2165/00007256-200131070-00002
Neumann, G., Heine, R., & Assenmacher, M. (2019). The physiological response to long-term endurance exercise in professional cyclists during a three-week road race: The Tour de France. European Journal of Applied Physiology, 119(8), 1709-1719. https://doi.org/10.1007/s00421-019-04142-3
Norton, K., & Olds, T. (1996). Morphological evolution of athletes over the 20th century. Sports Medicine, 22(3), 152-159. https://doi.org/10.2165/00007256-199622030-00002
Pachón, Á. G. M., Uricochea, A. M., Reyes, J. P., Beltrán, P. Y. P., Domínguez, D. F. G., & Velásquez, D. F. C. (2017). Caracterización de parámetros ventilatorios y antropométricos en ciclistas del municipio de Fusagasugá. Revista Impetus, 11(1), 45-56.
Padilla, S., Mujika, I., Angulo, F., & Goiriena, J. J. (2000). Scientific approach to the 1-h cycling world record: A case study. Journal of Applied Physiology, 89(4), 1522-1527. https://doi.org/10.1152/jappl.2000.89.4.1522
Padilla, S., Mujika, I., Cuesta, G., & Goiriena, J. J. (1999). Level ground and uphill cycling ability in professional road cycling. Medicine and Science in Sports and Exercise, 31(6), 878–885. https://doi.org/10.1097/00005768-199906000-00017
Pauw, K. D., Roelands, B., Cheung, S. S., de Geus, B., Rietjens, G., & Meeusen, R. (2013). Guidelines to Classify Subject Groups in Sport-Science Research. International Journal of Sports Physiology and Performance, 8(2), 111-122. https://doi.org/10.1123/ijspp.8.2.111
Prins, L., Terblanche, E., & Myburgh, K. H. (2007). Field and laboratory correlates of performance in competitive cross-country mountain bikers. Journal of Sports Sciences, 25(8), 927–935. https://doi.org/10.1080/02640410600907938
Riaza, L. M., Fideu, M. D., & López, V. (1993). Longitudinal study of anthropometric characteristics and performance in elite male and female junior cyclists. Journal of Human Movement Studies, 24(2), 69-79.
Sanders, D., Heijboer, M., Hesselink, M. K. C., & Van Loon, L. J. C. (2017). Training load and its role in cycling performance: A review of the literature. Sports Medicine, 47(8), 1573-1584. https://doi.org/10.1007/s40279-017-0687-5
Salvador Ramírez, D. A. (2019). Variables antropométricas como determinantes del rendimiento físico en ciclistas aficionados del equipo “Alma Team”, del Distrito Metropolitano de Quito.
Sallet, P., Mathieu, R., Fenech, G., & Baverel, G. (2006). Physiological differences of elite and professional road cyclists related to competition level and rider specialization. The Journal of Sports Medicine and Physical Fitness, 46(3), 361–365.
Schomöller, A., Schugardt, M., Kotsch, P., & Mayer, F. (2021). The Effect of Body Composition on Cycling Power During an Incremental Test in Young Athletes. Journal of Strength and Conditioning Research, 35(11), 3225-3231.
Siegel, T. P., Rosales Soto, G., & Herrera Valdebenito, M. (2017). Body composition and its relationship with endurance performance in elite Chilean cyclists. European Journal of Sport Science, 17(3), 260-266. https://doi.org/10.1080/17461391.2016.1248460
Sitko, S., Cirer Sastre, R., & López Laval, I. (2021). Impact of a low carbohydrate diet on body composition and performance in trained cyclists. Journal of Sports Nutrition and Exercise Metabolism, 31(2), 123-132. https://doi.org/10.1123/ijsnem.2020-0225
Stone, M. H., & Thomas, K. (2014). Sprinting performance and muscle characteristics in elite track cyclists. Journal of Strength and Conditioning Research, 28(5), 1425-1432. https://doi.org/10.1519/JSC.0000000000000307
Swain, D. P., Coast, J. R., Clifford, P. S., Milliken, M. C., & Stray-Gundersen, J. (1987). Influence of body size on oxygen consumption during bicycling. Journal of Applied Physiology (Bethesda, Md.: 1985), 62(2), 668–672. https://doi.org/10.1152/jappl.1987.62.2.668
Swain, D. P. (1994). The influence of body mass in endurance bicycling. Medicine and Science in Sports and Exercise, 26(1), 58–63.
Vogt, S., Schumacher, Y. O., Roecker, K., Dickhuth, H. H., & Schmid, A. (2007). Power output during stage racing in professional road cycling. Medicine and Science in Sports and Exercise, 39(7), 1231-1235. https://doi.org/10.1249/mss.0b013e3180601111
Wilber, R. L. (2004). Altitude training and athletic performance. Human Kinetics.
Wilber, R. L., Stray-Gundersen, J., & Levine, B. D. (1997). Effect of hypoxic ‘dose’ on physiological responses and sea-level performance. Medicine and Science in Sports and Exercise, 29(12), 1473-1479. https://doi.org/10.1097/00005768-199712000-00011