La IA creativa en la educación: El papel de la dependencia tecnológica, la motivación y la participación estudiantil
Contenido principal del artículo
DOI:
https://doi.org/10.17979/reipe.2025.12.2.11997Resumen
El rápido avance de la Inteligencia Artificial (IA) ofrece una oportunidad transformadora para la educación, aunque su pleno potencial en los entornos de aprendizaje sigue siendo en gran medida inexplorado, particularmente en lo que respecta a su impacto en la participación estudiantil y el aprendizaje personalizado. Este estudio examina el papel de la IA en la educación, centrándose en su contribución al proceso de aprendizaje y su impacto en la motivación del alumnado. Se encuestó a 1294 estudiantes indonesios (51.16 % mujeres) seleccionados mediante muestreo aleatorio. Los datos se recopilaron mediante un cuestionario en línea que evaluaba el uso de la IA, su efectividad percibida, la motivación y la participación antes y después de la implementación de la IA. Los hallazgos indican que los y las estudiantes perciben la IA como una herramienta valiosa para las tareas académicas, especialmente para resumir contenidos y redactar ensayos. De manera más notable, la motivación aumentó significativamente tras el uso de la IA, con un incremento de las puntuaciones medias de 2.9 a 4.1, lo que sugiere una fuerte correlación entre el uso de la IA y la participación activa (r = .69). Estos resultados sugieren que las tecnologías de IA mejoran eficazmente la motivación y el compromiso del estudiantado, fomentando una experiencia de aprendizaje más interactiva. Los hallazgos implican que la integración de la IA en la educación debería estar guiada por estrategias pedagógicas claras para potenciar la motivación y la participación, al tiempo que se apoye la creatividad y el pensamiento crítico.
Palabras clave:
Descargas
Detalles del artículo
Referencias
AFZAAL, Muhammad; ZIA, Aayesha; NOURI, Jalal; & FORS, Uno (2024). Informative feedback and explainable AI-based recommendations to support students’ self-regulation. Technology, Knowledge and Learning, 29(1), 331-354. https://doi.org/10.1007/s10758-023-09650-0
ALAQLOBI, Obied; ALDUAIS, Ahmed; QASEM, Fawaz; & ALASMARI, Muhammad (2024). A SWOT analysis of generative AI in applied linguistics: Leveraging strengths, addressing weaknesses, seizing opportunities, and mitigating threats. F1000Research, 13, Article 1040. https://doi.org/10.12688/f1000research.155378.1
ALI, Sajid; ABUHMED, Tamer; EL-SAPPAGH, Shaker; MUHAMMAD, Khan; ALONSO-MORAL, Jose M; CONFALONIERI, Roberto; GUIDOTTI, Riccardo; DEL SER, Javier; DÍAZ-RODRÍGUEZ, Natalia; & HERRERA, Francisco (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion, 99, Article 101805. https://doi.org/10.1016/j.inffus.2023.101805
ALLIL, Kamaal (2024). Integrating AI-driven marketing analytics techniques into the classroom: Pedagogical strategies for enhancing student engagement and future business success. Journal of Marketing Analytics, 12, 1-27. https://doi.org/10.1057/s41270-023-00281-z
ALUKO, Henry Adeyemi; ALUKO, Ayodele; OFFIAH, Goodness Amaka; OGUNJIMI, Funke; ALUKO, Akinseye Olatokunbo; ALALADE, Funmi Margareth; OGEZE UKEJE, Ikechukwu; & NWANI, Chinyere Happiness (2025). Exploring the effectiveness of AI-generated learning materials in facilitating active learning strategies and knowledge retention in higher education. International Journal of Organizational Analysis. Advance online publication. https://doi.org/10.1108/IJOA-07-2024-4632
ANANTRASIRICHAI, Nantheera, & BULL, David (2022). Artificial intelligence in the creative industries: A review. Artificial Intelligence Review, 55(1), 589–656. https://doi.org/10.1007/s10462-021-10039-7
BADA, Steve Olusegun (2015). Constructivism learning theory: A paradigm for teaching and learning. Journal of Research & Method in Education, 5(6), 66-70.
BAJAJ, Richa; & SHARMA, Vidushi (2018). Smart education with artificial intelligence based determination of learning styles. Procedia Computer Science, 132, 834-842. https://doi.org/10.1016/j.procs.2018.05.095
BEN-ASSULI, Ofir; HEART, Tsipi; KLEMPFNER Robert; & PADMAN, Rema (2023). Human-machine collaboration for feature selection and integration to improve congestive heart failure risk prediction. Decision Support Systems, 172, Article 113982. https://doi.org/10.1016/j.dss.2023.113982
BERNACKI, Matthew L.; GREENE, Meghan J; & LOBCZOWSKI, Nikki G. (2021). A systematic review of research on personalized learning: Personalized by whom, to what, how, and for what purpose (s)? Educational Psychology Review, 33(4), 1675-1715. https://doi.org/10.1007/s10648-021-09615-8
BIJJA VISHWANATH, Dr Surendar Vaddepalli (2025). Enhancing student engagement and performance with artificial intelligence. Machine Intelligence Research, 19(1), 126-146.
BOUSSIOUX, Léonard; LANE, Jacqueline N.; ZHANG, Miaomiao; JACIMOVIC Vladimir; & LAKHANI, Karim R. (2024). The Crowdless Future? Generative AI and creative problem-solving. Organization Science, 35(5), 1589-1607. https://doi.org/10.1287/orsc.2023.18430
BRUNER, Jerome (1974). Toward a theory of instruction. Harvard university press.
BRUSILOVSKY, Peter (2024). AI in education, learner control, and human-AI collaboration. International Journal of Artificial Intelligence in Education, 34(1), 122-135. https://doi.org/10.1007/s40593-023-00356-z
CHAI, Ching Sing; YU, Ding; KING, Ronnel B; & ZHOU, Ying (2024). Development and validation of the artificial intelligence learning intention scale (AILIS) for university students. Sage Open, 14(2), 21582440241242188. https://doi.org/10.1177/21582440241242188
CHAI, Fangyuan; MA, Jiajia; WANG, Yi; ZHU, Jun; & HAN, Tingting (2024). Grading by AI makes me feel fairer? How different evaluators affect college students’ perception of fairness. Frontiers in Psychology, 15, 1221177. https://doi.org/10.3389/fpsyg.2024.1221177
CHAN, Cecilia Ka Yuk (2023). A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education, 20(1), Article 38. https://doi.org/10.1186/s41239-023-00408-3
CHIU, Thomas K. F. (2024). The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments, 32(10), 6187-6203. https://doi.org/10.1080/10494820.2023.2253861
CLEGG, Stewart; & SARKER, Soumodip (2024). Artificial intelligence and management education: A conceptualization of human-machine interaction. The International Journal of Management Education, 22(3), Article 101007. https://doi.org/10.1016/j.ijme.2024.101007
DAVAR, Narius Farhad; DEWAN, M. Ali Akber; & ZHANG, Xiaokun (2025). AI chatbots in education: Challenges and opportunities. Information, 16(3), Article 235. https://doi.org/10.3390/info16030235
DEBS, Luciana; MILLER, Kurtis D.; ASHBY, Iryna; & EXTER, Marisa (2019). Students’ perspectives on different teaching methods: Comparing innovative and traditional courses in a technology program. Research in Science & Technological Education, 37(3), 297-323. https://doi.org/10.1080/02635143.2018.1551199
DECI, Edward L; & RYAN, Richard M. (2012). Self-Determination Theory. In Paul A. M. Van Lange, Arie W. Kruglanski & E. Tory Higgins (Eds.), Handbook of Theories of Social Psychology: Volume 1 (pp. 416-437). SAGE https://doi.org/10.4135/9781446249215.n21
DEMINK-CARTHEW, Jessica; NETCOH, Steven; & FARBER, Katy (2020). Exploring the potential for students to develop self-awareness through personalized learning. The Journal of Educational Research, 113(3), 165-176. https://doi.org/10.1080/00220671.2020.1764467
DIEKER, Lisa A.; HINES, Rebecca; WILKINS, Ilene; HUGHES, Charles; SCOTT, Karyn Hawkins; SMITH, Shaunn; INGRAHAM, Kathleen; ALI, Kamran; ZAUGG, Tiffanie; & SHAH, Sachin (2024). Using an artificial intelligence (AI) agent to support teacher instruction and student learning. Journal of Special Education Preparation, 4(2), 78-88. https://doi.org/10.33043/d8xb94q7
DOĞAN, Miray; CELIK, Arda; & ARSLAN, Hasan (2025). AI In higher education: Risks and opportunities from the academician perspective. European Journal of Education, 60(1), Article e12863. https://doi.org/10.1111/ejed.12863
DOS SANTOS, Giselle Glória Balbino; SOARES, Adriana Benevides; & MONTEIRO, Marcia (2022). Habilidades sociais, motivação para o aprendizado e clima escolar no ensino fundamental e médio. Revista de Estudios e Investigación en Psicología y Educación, 9(2), 301-317. https://doi.org/10.17979/reipe.2022.9.2.9208
EDEN, Chima Abimbola; CHISOM, Onyebuchi Nneamaka; & ADENIYI, Idowu Sulaimon (2024). Integrating AI in education: Opportunities, challenges, and ethical considerations. Magna Scientia Advanced Research and Reviews, 10(2), 006-013. https://doi.org/10.30574/msarr.2024.10.2.0039
ESCALANTE, Juan; PACK, Austin; BARRETT, Alex (2023). AI-generated feedback on writing: Insights into efficacy and ENL student preference. International Journal of Educational Technology in Higher Education, 20(1), Article 57. https://doi.org/10.1186/s41239-023-00425-2
FANG, Menglin; ABDALLAH, Asma Khaleel; & VORFOLOMEYEVA, Olga (2024). Collaborative AI-enhanced digital mind-mapping as a tool for stimulating creative thinking in inclusive education for students with neurodevelopmental disorders. BMC Psychology, 12(1), Article 488. https://doi.org/10.1186/s40359-024-01975-4
FARIDA, Farida; ALAMSYAH, Yosep Aspat; & SUHERMAN, Suherman (2023). Assessment in educational context: The case of environmental literacy, digital literacy, and its relation to mathematical thinking skill. Revista de Educación a Distancia (RED), 23(76), 1-26. https://doi.org/10.6018/red.552231
FATOUROS, Cherryl (1995). Young children using computers: Planning appropriate learning experiences. Australasian Journal of Early Childhood, 20(2), 1-6. https://doi.org/10.1177/183693919502000202
GERLICH, Michael (2025). AI tools in society: Impacts on cognitive offloading and the future of critical thinking. Societies, 15(1), 6. https://doi.org/10.3390/soc15010006
HABIB, Sabrina; VOGEL, Thomas; & THORNE, Evelyn (2025). Student perspectives on creative pedagogy: Considerations for the Age of AI. Thinking Skills and Creativity, 56, Article 101767. https://doi.org/10.1016/j.tsc.2025.101767
JONASSEN, David H; & ROHRER-MURPHY, Lucia (1999). Activity theory as a framework for designing constructivist learning environments. Educational Technology Research and Development, 47(1), 61-79. https://doi.org/10.1007/BF02299477
KHALIFA, Mohamed; & ALBADAWY, Mona (2024). Using artificial intelligence in academic writing and research: An essential productivity tool. Computer Methods and Programs in Biomedicine Update, 5, Article 100145. https://doi.org/10.1016/j.cmpbup.2024.100145
KLINE, Rex B. (2015). Principles and practice of structural equation modelling (4th Ed.). Guilford Press.
KUZMINSKA, Olena; POHREBNIAK, Denys; MAZORCHUK, Mariia; & OSADCHYI, Viacheslav (2024). Leveraging AI tools for enhancing project team dynamics: Impact on self-efficacy and student engagement. Information Technologies and Learning Tools, 100(2), 92-109. https://doi.org/10.33407/itlt.v100i2.5602
LIU, Liu (2025). Impact of AI gamification on EFL learning outcomes and nonlinear dynamic motivation: Comparing adaptive learning paths, conversational agents, and storytelling. Education and Information Technologies, 30, 11299-11338. https://doi.org/10.1007/s10639-024-13296-5
MILLS, Carol J. (2003). Characteristics of effective teachers of gifted students: Teacher background and personality styles of students. Gifted Child Quarterly, 47(4), 272-281. https://doi.org/10.1177/001698620304700404
MONTEIRO, Sílvia; SEABRA, Filipa; SANTOS, Sandra; ALMEIDA, Leandro S.; & DE ALMEIDA, Ana Tomás (2025). Career intervention effectiveness and motivation: Blended and distance modalities comparison. Revista de Estudios e Investigación en Psicología y Educación, 12(1), Article e11118. https://doi.org/10.17979/reipe.2025.12.1.11118
MUTAMBIK, Ibrahim (2024). The use of AI-driven automation to enhance student learning experiences in the KSA: An alternative pathway to sustainable education. Sustainability, 16(14), Article 5970. https://doi.org/10.3390/su16145970
OAKHILL, Jane; HARTT, Joanne; & SAMOLS, Deborah (2005). Levels of comprehension monitoring and working memory in good and poor comprehenders. Reading and Writing, 18, 657-686. https://doi.org/10.1007/s11145-005-3355-z
OWOC, Mieczysław Lech; SAWICKA, Agnieszka; & WEICHBROTH, Paweł (2019). Artificial intelligence technologies in education: Benefits, challenges and strategies of implementation. In Mieczysław Lech Owoc & Maciej Pondel (eds), Artificial intelligence for knowledge management. AI4KM 2019. IFIP Advances in Information and Communication Technology, Vol. 599 (pp. 37-58). Springer, Cham. https://doi.org/10.1007/978-3-030-85001-2_4
PANE, John F.; STEINER, Elizabeth D.; BAIRD, Matthew D; & HAMILTON, Laura S. (2015). Continued Progress: Promising evidence on personalized learning. Rand Corporation. https://doi.org/10.7249/RR1365
PEDRO, Francesc; SUBOSA, Miguel; RIVAS, Axel; & VALVERDE, Paula (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. https://hdl.handle.net/20.500.12799/6533
RODWAY, Paul; & SCHEPMAN, Astrid (2023). The impact of adopting AI educational technologies on projected course satisfaction in university students. Computers and Education: Artificial Intelligence, 5, Article 100150. https://doi.org/10.1016/j.caeai.2023.100150
ROMANELLI, Frank; BIRD, Eleanora; & RYAN, Melody (2009). Learning styles: A review of theory, application, and best practices. American Journal of Pharmaceutical Education, 73(1). https://pmc.ncbi.nlm.nih.gov/articles/PMC2690881/
SAJJA, Ramteja; SERMET, Yusuf; CIKMAZ, Muhammed; CWIERTNY, David; & DEMIR, Ibrahim (2024). Artificial intelligence-enabled intelligent assistant for personalized and adaptive learning in higher education. Information, 15(10), Article 596. https://doi.org/10.3390/info15100596
SCHUMANN, Christian-Andreas; SCHWILL, Emelie; MROTZEK, Isabell; BAHN, Lydia; & BAHN, Thomas (2024). An AI-supported adaptive study system for individualized university services. In David Guralnick, Michael E. Auer, & Antonella Poce (Eds.) Creative Approaches to Technology-Enhanced Learning for the Workplace and Higher Education. TLIC 2024. Lecture Notes in Networks and Systems, Vol. 1166 (pp 168-175). Springer, Cham. https://doi.org/10.1007/978-3-031-73427-4_17
SCHUNK, Dale H. (2008). Motivation and self-regulated learning: Theory, research, and applications. Laurence Erlbaum.
SHEMSHACK, Atikah; KINSHUK, kinshuk; & SPECTOR, Jonathan Michael (2021). A comprehensive analysis of personalized learning components. Journal of Computers in Education, 8(4), 485-503. https://doi.org/10.1007/s40692-021-00188-7
SHOAIB, Muhammad; SAYED, Nasir; SINGH, Jaiteg; SHAFI, Jana; KHAN, Shakir; & ALI, Farman (2024). AI student success predictor: Enhancing personalized learning in campus management systems. Computers in Human Behavior, 158, Article 108301. https://doi.org/10.1016/j.chb.2024.108301
SØRENSEN, Natasha Lee; BEMMAN, Brian; JENSEN, Martin Bach; MOESLUND, Thomas B; & THOMSEN, Janus Laust (2023). Machine learning in general practice: Scoping review of administrative task support and automation. BMC Primary Care, 24(1), Article 14. https://doi.org/10.1186/s12875-023-01969-y
SU, C‐H.; & CHENG, C‐H. (2015). A mobile gamification learning system for improving the learning motivation and achievements. Journal of Computer Assisted Learning, 31(3), 268-286. https://doi.org/10.1111/jcal.12088
SUHERMAN, Suherman; & VIDÁKOVICH, Tibor (2024). Role of creative self-efficacy and perceived creativity as predictors of mathematical creative thinking: Mediating role of computational thinking. Thinking Skills and Creativity, 53, 101591. https://doi.org/10.1016/j.tsc.2024.101591
SUPRIADI, Nanang; JAMALUDDIN Z, Wan; & SUHERMAN, Suherman (2024). The role of learning anxiety and mathematical reasoning as predictor of promoting learning motivation: The mediating role of mathematical problem solving. Thinking Skills and Creativity, 52, Article 101497. https://doi.org/10.1016/j.tsc.2024.101497
TAPALOVA, Olga; & ZHIYENBAYEVA, Nadezhda (2022). Artificial intelligence in education: AIEd for personalised learning pathways. Electronic Journal of E-Learning, 20(5), 639-653. https://doi.org/10.34190/ejel.20.5.2597
UPPAL, Komal; & HAJIAN, Shiva (2024). Students’ perceptions of ChatGPT in higher education: A study of academic enhancement, procrastination, and ethical concerns. European Journal of Educational Research, 14(1), 199-211. https://doi.org/10.12973/eu-jer.14.1.199
VOLKMAR, Gioia; FISCHER, Peter M; & REINECKE, Sven (2022). Artificial intelligence and machine learning: Exploring drivers, barriers, and future developments in marketing management. Journal of Business Research, 149, 599-614. https://doi.org/10.1016/j.jbusres.2022.04.007
VYGOTSKY, Lev S. (1978). Mind in society: The development of higher psychological processes (Vol. 86). Harvard university press.
WAITE-STUPIANSKY, Sandra (2022). Jean Piaget’s constructivist theory of learning. In Theories of early childhood education (pp. 3-18). Routledge.
WANNER, Thomas; & PALMER, Edward (2015). Personalising learning: Exploring student and teacher perceptions about flexible learning and assessment in a flipped university course. Computers & Education, 88, 354-369. https://doi.org/10.1016/j.compedu.2015.07.008
WIDIARTI, Yenni (2024). Canva and comic strips: Facilitate on teaching writing instruction. International Journal of Contemporary Studies in Education (IJ-CSE), 3(3), 245-255. https://doi.org/10.56855/ijcse.v3i3.1170
WINGSTRÖM, Roosa; HAUTALA, Johanna; & LUNDMAN, Riina (2024). Redefining creativity in the era of AI? Perspectives of computer scientists and new media artists. Creativity Research Journal, 36(2), 177-193. https://doi.org/10.1080/10400419.2022.2107850
XXU, Yongjun; LIU, Xin; CAO, Xin; HUANG, Changping; LIU, Enke; QIAN, Sen; LIU, Xingchen; WU, Yanjun; DONG, Fengliang; QIU, Cheng-Wei; QIU, Junjun; HUA, Keqin; SU, Wentao; WU, Jian; XU, Huiyu; HAN, Yong; FU, Chenguang; YIN, Zhigang; LIU, Miao; … & ZHANG, Jiabao (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), Article 100179. https://doi.org/10.1016/j.xinn.2021.100179
YUAN, Lingjie; & LIU, Xiaojuan (2025). The effect of artificial intelligence tools on EFL learners’ engagement, enjoyment, and motivation. Computers in Human Behavior, 162, Article 108474. https://doi.org/10.1016/j.chb.2024.108474
YURT, Eyup; & KASARCI, Ismail (2024). A questionnaire of artificial intelligence use motives: A contribution to investigating the connection between AI and motivation. International Journal of Technology in Education, 7(2), 308-325. https://doi.org/10.46328/ijte.725
ZAWACKI-RICHTER, Olaf; MARÍN, Victoria I.; BOND, Melissa; & GOUVERNEUR, Franziska (2019). Systematic review of research on artificial intelligence applications in higher education - where are the educators? International Journal of Educational Technology in Higher Education, 16(1), Article 39. https://doi.org/10.1186/s41239-019-0171-0
ZHAI, Xuesong; CHU, Xiaoyan; CHAI, Ching Sing; JONG, Morris Siu Yung; ISTENIC, Andreja; SPECTOR, Michael; LIU, Jia-Bao; YUAN, Jing; & LI, Yan (2021). A review of artificial intelligence (AI) in education from 2010 to 2020. Complexity, 2021(1), Article 8812542. https://doi.org/10.1155/2021/8812542
ZHOU, Wei (2023). Chat GPT integrated with voice assistant as learning oral chat-based constructive communication to improve communicative competence for EFL earners (No. arXiv:2311.00718). arXiv. https://doi.org/10.48550/arXiv.2311.00718

