Contido principal do artigo

Wan JAMALUDDIN Z
Universitas Islam Negeri Raden Intan Lampung
Indonésia
https://orcid.org/0009-0007-9387-2412
Biografía
Nanang SUPRIADI
Universitas Islam Negeri Raden Intan Lampung
Indonésia
https://orcid.org/0000-0001-6482-3813
Biografía
Suherman SUHERMAN
University of Szeged and Universitas Islam Negeri Raden Intan Lampung
Hungria
https://orcid.org/0000-0002-1700-4177
Biografía
Vol. 12 N.º 2 (2025), Artigos, Páxinas Article e11997

DOI:

https://doi.org/10.17979/reipe.2025.12.2.11997
Recibido: 26-04-2025 Publicado: 05-10-2025
Direitos de Autor Como Citar

Resumo

O rápido avanço da Inteligência Artificial (IA) oferece uma oportunidade transformadora para a educação, embora o seu pleno potencial em ambientes de aprendizagem continue em grande parte inexplorado, particularmente no que diz respeito ao seu impacto na participação dos alunos e na aprendizagem personalizada. Este estudo examina o papel da IA na educação, com foco na sua contribuição para o processo de aprendizagem e no seu impacto na motivação dos alunos. Foi realizada uma pesquisa transversal com 1294 estudantes indonésios (51,16% mulheres, 48,84% homens) selecionados por amostragem aleatória. Os dados foram coletados por meio de um questionário online que avaliava o uso da IA, sua eficácia percebida, a motivação e a participação antes e depois da implementação da IA. Os resultados indicam que os e as estudantes percebem a IA como uma ferramenta valiosa para tarefas académicas, especialmente para resumir conteúdos e redigir ensaios. Mais notavelmente, a motivação aumentou significativamente após o uso da IA, com um aumento nas pontuações médias de 2.9 para 4.1, o que sugere uma forte correlação entre o uso da IA e a participação ativa (r = .69). Esses resultados sugerem que as tecnologias de IA melhoram efetivamente a motivação e o envolvimento dos e das estudantes, promovendo uma experiência de aprendizagem mais interativa. As descobertas implicam que a integração da IA na educação deve ser orientada por estratégias pedagógicas claras para aumentar a motivação e a participação, ao mesmo tempo em que apoia a criatividade e o pensamento crítico.

Downloads

Os dados de download ainda não estão disponíveis.

Detalles do artigo

Referências

AFZAAL, Muhammad; ZIA, Aayesha; NOURI, Jalal; & FORS, Uno (2024). Informative feedback and explainable AI-based recommendations to support students’ self-regulation. Technology, Knowledge and Learning, 29(1), 331-354. https://doi.org/10.1007/s10758-023-09650-0

ALAQLOBI, Obied; ALDUAIS, Ahmed; QASEM, Fawaz; & ALASMARI, Muhammad (2024). A SWOT analysis of generative AI in applied linguistics: Leveraging strengths, addressing weaknesses, seizing opportunities, and mitigating threats. F1000Research, 13, Article 1040. https://doi.org/10.12688/f1000research.155378.1

ALI, Sajid; ABUHMED, Tamer; EL-SAPPAGH, Shaker; MUHAMMAD, Khan; ALONSO-MORAL, Jose M; CONFALONIERI, Roberto; GUIDOTTI, Riccardo; DEL SER, Javier; DÍAZ-RODRÍGUEZ, Natalia; & HERRERA, Francisco (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion, 99, Article 101805. https://doi.org/10.1016/j.inffus.2023.101805

ALLIL, Kamaal (2024). Integrating AI-driven marketing analytics techniques into the classroom: Pedagogical strategies for enhancing student engagement and future business success. Journal of Marketing Analytics, 12, 1-27. https://doi.org/10.1057/s41270-023-00281-z

ALUKO, Henry Adeyemi; ALUKO, Ayodele; OFFIAH, Goodness Amaka; OGUNJIMI, Funke; ALUKO, Akinseye Olatokunbo; ALALADE, Funmi Margareth; OGEZE UKEJE, Ikechukwu; & NWANI, Chinyere Happiness (2025). Exploring the effectiveness of AI-generated learning materials in facilitating active learning strategies and knowledge retention in higher education. International Journal of Organizational Analysis. Advance online publication. https://doi.org/10.1108/IJOA-07-2024-4632

ANANTRASIRICHAI, Nantheera, & BULL, David (2022). Artificial intelligence in the creative industries: A review. Artificial Intelligence Review, 55(1), 589–656. https://doi.org/10.1007/s10462-021-10039-7

BADA, Steve Olusegun (2015). Constructivism learning theory: A paradigm for teaching and learning. Journal of Research & Method in Education, 5(6), 66-70.

BAJAJ, Richa; & SHARMA, Vidushi (2018). Smart education with artificial intelligence based determination of learning styles. Procedia Computer Science, 132, 834-842. https://doi.org/10.1016/j.procs.2018.05.095

BEN-ASSULI, Ofir; HEART, Tsipi; KLEMPFNER Robert; & PADMAN, Rema (2023). Human-machine collaboration for feature selection and integration to improve congestive heart failure risk prediction. Decision Support Systems, 172, Article 113982. https://doi.org/10.1016/j.dss.2023.113982

BERNACKI, Matthew L.; GREENE, Meghan J; & LOBCZOWSKI, Nikki G. (2021). A systematic review of research on personalized learning: Personalized by whom, to what, how, and for what purpose (s)? Educational Psychology Review, 33(4), 1675-1715. https://doi.org/10.1007/s10648-021-09615-8

BIJJA VISHWANATH, Dr Surendar Vaddepalli (2025). Enhancing student engagement and performance with artificial intelligence. Machine Intelligence Research, 19(1), 126-146.

BOUSSIOUX, Léonard; LANE, Jacqueline N.; ZHANG, Miaomiao; JACIMOVIC Vladimir; & LAKHANI, Karim R. (2024). The Crowdless Future? Generative AI and creative problem-solving. Organization Science, 35(5), 1589-1607. https://doi.org/10.1287/orsc.2023.18430

BRUNER, Jerome (1974). Toward a theory of instruction. Harvard university press.

BRUSILOVSKY, Peter (2024). AI in education, learner control, and human-AI collaboration. International Journal of Artificial Intelligence in Education, 34(1), 122-135. https://doi.org/10.1007/s40593-023-00356-z

CHAI, Ching Sing; YU, Ding; KING, Ronnel B; & ZHOU, Ying (2024). Development and validation of the artificial intelligence learning intention scale (AILIS) for university students. Sage Open, 14(2), 21582440241242188. https://doi.org/10.1177/21582440241242188

CHAI, Fangyuan; MA, Jiajia; WANG, Yi; ZHU, Jun; & HAN, Tingting (2024). Grading by AI makes me feel fairer? How different evaluators affect college students’ perception of fairness. Frontiers in Psychology, 15, 1221177. https://doi.org/10.3389/fpsyg.2024.1221177

CHAN, Cecilia Ka Yuk (2023). A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education, 20(1), Article 38. https://doi.org/10.1186/s41239-023-00408-3

CHIU, Thomas K. F. (2024). The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments, 32(10), 6187-6203. https://doi.org/10.1080/10494820.2023.2253861

CLEGG, Stewart; & SARKER, Soumodip (2024). Artificial intelligence and management education: A conceptualization of human-machine interaction. The International Journal of Management Education, 22(3), Article 101007. https://doi.org/10.1016/j.ijme.2024.101007

DAVAR, Narius Farhad; DEWAN, M. Ali Akber; & ZHANG, Xiaokun (2025). AI chatbots in education: Challenges and opportunities. Information, 16(3), Article 235. https://doi.org/10.3390/info16030235

DEBS, Luciana; MILLER, Kurtis D.; ASHBY, Iryna; & EXTER, Marisa (2019). Students’ perspectives on different teaching methods: Comparing innovative and traditional courses in a technology program. Research in Science & Technological Education, 37(3), 297-323. https://doi.org/10.1080/02635143.2018.1551199

DECI, Edward L; & RYAN, Richard M. (2012). Self-Determination Theory. In Paul A. M. Van Lange, Arie W. Kruglanski & E. Tory Higgins (Eds.), Handbook of Theories of Social Psychology: Volume 1 (pp. 416-437). SAGE https://doi.org/10.4135/9781446249215.n21

DEMINK-CARTHEW, Jessica; NETCOH, Steven; & FARBER, Katy (2020). Exploring the potential for students to develop self-awareness through personalized learning. The Journal of Educational Research, 113(3), 165-176. https://doi.org/10.1080/00220671.2020.1764467

DIEKER, Lisa A.; HINES, Rebecca; WILKINS, Ilene; HUGHES, Charles; SCOTT, Karyn Hawkins; SMITH, Shaunn; INGRAHAM, Kathleen; ALI, Kamran; ZAUGG, Tiffanie; & SHAH, Sachin (2024). Using an artificial intelligence (AI) agent to support teacher instruction and student learning. Journal of Special Education Preparation, 4(2), 78-88. https://doi.org/10.33043/d8xb94q7

DOĞAN, Miray; CELIK, Arda; & ARSLAN, Hasan (2025). AI In higher education: Risks and opportunities from the academician perspective. European Journal of Education, 60(1), Article e12863. https://doi.org/10.1111/ejed.12863

DOS SANTOS, Giselle Glória Balbino; SOARES, Adriana Benevides; & MONTEIRO, Marcia (2022). Habilidades sociais, motivação para o aprendizado e clima escolar no ensino fundamental e médio. Revista de Estudios e Investigación en Psicología y Educación, 9(2), 301-317. https://doi.org/10.17979/reipe.2022.9.2.9208

EDEN, Chima Abimbola; CHISOM, Onyebuchi Nneamaka; & ADENIYI, Idowu Sulaimon (2024). Integrating AI in education: Opportunities, challenges, and ethical considerations. Magna Scientia Advanced Research and Reviews, 10(2), 006-013. https://doi.org/10.30574/msarr.2024.10.2.0039

ESCALANTE, Juan; PACK, Austin; BARRETT, Alex (2023). AI-generated feedback on writing: Insights into efficacy and ENL student preference. International Journal of Educational Technology in Higher Education, 20(1), Article 57. https://doi.org/10.1186/s41239-023-00425-2

FANG, Menglin; ABDALLAH, Asma Khaleel; & VORFOLOMEYEVA, Olga (2024). Collaborative AI-enhanced digital mind-mapping as a tool for stimulating creative thinking in inclusive education for students with neurodevelopmental disorders. BMC Psychology, 12(1), Article 488. https://doi.org/10.1186/s40359-024-01975-4

FARIDA, Farida; ALAMSYAH, Yosep Aspat; & SUHERMAN, Suherman (2023). Assessment in educational context: The case of environmental literacy, digital literacy, and its relation to mathematical thinking skill. Revista de Educación a Distancia (RED), 23(76), 1-26. https://doi.org/10.6018/red.552231

FATOUROS, Cherryl (1995). Young children using computers: Planning appropriate learning experiences. Australasian Journal of Early Childhood, 20(2), 1-6. https://doi.org/10.1177/183693919502000202

GERLICH, Michael (2025). AI tools in society: Impacts on cognitive offloading and the future of critical thinking. Societies, 15(1), 6. https://doi.org/10.3390/soc15010006

HABIB, Sabrina; VOGEL, Thomas; & THORNE, Evelyn (2025). Student perspectives on creative pedagogy: Considerations for the Age of AI. Thinking Skills and Creativity, 56, Article 101767. https://doi.org/10.1016/j.tsc.2025.101767

JONASSEN, David H; & ROHRER-MURPHY, Lucia (1999). Activity theory as a framework for designing constructivist learning environments. Educational Technology Research and Development, 47(1), 61-79. https://doi.org/10.1007/BF02299477

KHALIFA, Mohamed; & ALBADAWY, Mona (2024). Using artificial intelligence in academic writing and research: An essential productivity tool. Computer Methods and Programs in Biomedicine Update, 5, Article 100145. https://doi.org/10.1016/j.cmpbup.2024.100145

KLINE, Rex B. (2015). Principles and practice of structural equation modelling (4th Ed.). Guilford Press.

KUZMINSKA, Olena; POHREBNIAK, Denys; MAZORCHUK, Mariia; & OSADCHYI, Viacheslav (2024). Leveraging AI tools for enhancing project team dynamics: Impact on self-efficacy and student engagement. Information Technologies and Learning Tools, 100(2), 92-109. https://doi.org/10.33407/itlt.v100i2.5602

LIU, Liu (2025). Impact of AI gamification on EFL learning outcomes and nonlinear dynamic motivation: Comparing adaptive learning paths, conversational agents, and storytelling. Education and Information Technologies, 30, 11299-11338. https://doi.org/10.1007/s10639-024-13296-5

MILLS, Carol J. (2003). Characteristics of effective teachers of gifted students: Teacher background and personality styles of students. Gifted Child Quarterly, 47(4), 272-281. https://doi.org/10.1177/001698620304700404

MONTEIRO, Sílvia; SEABRA, Filipa; SANTOS, Sandra; ALMEIDA, Leandro S.; & DE ALMEIDA, Ana Tomás (2025). Career intervention effectiveness and motivation: Blended and distance modalities comparison. Revista de Estudios e Investigación en Psicología y Educación, 12(1), Article e11118. https://doi.org/10.17979/reipe.2025.12.1.11118

MUTAMBIK, Ibrahim (2024). The use of AI-driven automation to enhance student learning experiences in the KSA: An alternative pathway to sustainable education. Sustainability, 16(14), Article 5970. https://doi.org/10.3390/su16145970

OAKHILL, Jane; HARTT, Joanne; & SAMOLS, Deborah (2005). Levels of comprehension monitoring and working memory in good and poor comprehenders. Reading and Writing, 18, 657-686. https://doi.org/10.1007/s11145-005-3355-z

OWOC, Mieczysław Lech; SAWICKA, Agnieszka; & WEICHBROTH, Paweł (2019). Artificial intelligence technologies in education: Benefits, challenges and strategies of implementation. In Mieczysław Lech Owoc & Maciej Pondel (eds), Artificial intelligence for knowledge management. AI4KM 2019. IFIP Advances in Information and Communication Technology, Vol. 599 (pp. 37-58). Springer, Cham. https://doi.org/10.1007/978-3-030-85001-2_4

PANE, John F.; STEINER, Elizabeth D.; BAIRD, Matthew D; & HAMILTON, Laura S. (2015). Continued Progress: Promising evidence on personalized learning. Rand Corporation. https://doi.org/10.7249/RR1365

PEDRO, Francesc; SUBOSA, Miguel; RIVAS, Axel; & VALVERDE, Paula (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. https://hdl.handle.net/20.500.12799/6533

RODWAY, Paul; & SCHEPMAN, Astrid (2023). The impact of adopting AI educational technologies on projected course satisfaction in university students. Computers and Education: Artificial Intelligence, 5, Article 100150. https://doi.org/10.1016/j.caeai.2023.100150

ROMANELLI, Frank; BIRD, Eleanora; & RYAN, Melody (2009). Learning styles: A review of theory, application, and best practices. American Journal of Pharmaceutical Education, 73(1). https://pmc.ncbi.nlm.nih.gov/articles/PMC2690881/

SAJJA, Ramteja; SERMET, Yusuf; CIKMAZ, Muhammed; CWIERTNY, David; & DEMIR, Ibrahim (2024). Artificial intelligence-enabled intelligent assistant for personalized and adaptive learning in higher education. Information, 15(10), Article 596. https://doi.org/10.3390/info15100596

SCHUMANN, Christian-Andreas; SCHWILL, Emelie; MROTZEK, Isabell; BAHN, Lydia; & BAHN, Thomas (2024). An AI-supported adaptive study system for individualized university services. In David Guralnick, Michael E. Auer, & Antonella Poce (Eds.) Creative Approaches to Technology-Enhanced Learning for the Workplace and Higher Education. TLIC 2024. Lecture Notes in Networks and Systems, Vol. 1166 (pp 168-175). Springer, Cham. https://doi.org/10.1007/978-3-031-73427-4_17

SCHUNK, Dale H. (2008). Motivation and self-regulated learning: Theory, research, and applications. Laurence Erlbaum.

SHEMSHACK, Atikah; KINSHUK, kinshuk; & SPECTOR, Jonathan Michael (2021). A comprehensive analysis of personalized learning components. Journal of Computers in Education, 8(4), 485-503. https://doi.org/10.1007/s40692-021-00188-7

SHOAIB, Muhammad; SAYED, Nasir; SINGH, Jaiteg; SHAFI, Jana; KHAN, Shakir; & ALI, Farman (2024). AI student success predictor: Enhancing personalized learning in campus management systems. Computers in Human Behavior, 158, Article 108301. https://doi.org/10.1016/j.chb.2024.108301

SØRENSEN, Natasha Lee; BEMMAN, Brian; JENSEN, Martin Bach; MOESLUND, Thomas B; & THOMSEN, Janus Laust (2023). Machine learning in general practice: Scoping review of administrative task support and automation. BMC Primary Care, 24(1), Article 14. https://doi.org/10.1186/s12875-023-01969-y

SU, C‐H.; & CHENG, C‐H. (2015). A mobile gamification learning system for improving the learning motivation and achievements. Journal of Computer Assisted Learning, 31(3), 268-286. https://doi.org/10.1111/jcal.12088

SUHERMAN, Suherman; & VIDÁKOVICH, Tibor (2024). Role of creative self-efficacy and perceived creativity as predictors of mathematical creative thinking: Mediating role of computational thinking. Thinking Skills and Creativity, 53, 101591. https://doi.org/10.1016/j.tsc.2024.101591

SUPRIADI, Nanang; JAMALUDDIN Z, Wan; & SUHERMAN, Suherman (2024). The role of learning anxiety and mathematical reasoning as predictor of promoting learning motivation: The mediating role of mathematical problem solving. Thinking Skills and Creativity, 52, Article 101497. https://doi.org/10.1016/j.tsc.2024.101497

TAPALOVA, Olga; & ZHIYENBAYEVA, Nadezhda (2022). Artificial intelligence in education: AIEd for personalised learning pathways. Electronic Journal of E-Learning, 20(5), 639-653. https://doi.org/10.34190/ejel.20.5.2597

UPPAL, Komal; & HAJIAN, Shiva (2024). Students’ perceptions of ChatGPT in higher education: A study of academic enhancement, procrastination, and ethical concerns. European Journal of Educational Research, 14(1), 199-211. https://doi.org/10.12973/eu-jer.14.1.199

VOLKMAR, Gioia; FISCHER, Peter M; & REINECKE, Sven (2022). Artificial intelligence and machine learning: Exploring drivers, barriers, and future developments in marketing management. Journal of Business Research, 149, 599-614. https://doi.org/10.1016/j.jbusres.2022.04.007

VYGOTSKY, Lev S. (1978). Mind in society: The development of higher psychological processes (Vol. 86). Harvard university press.

WAITE-STUPIANSKY, Sandra (2022). Jean Piaget’s constructivist theory of learning. In Theories of early childhood education (pp. 3-18). Routledge.

WANNER, Thomas; & PALMER, Edward (2015). Personalising learning: Exploring student and teacher perceptions about flexible learning and assessment in a flipped university course. Computers & Education, 88, 354-369. https://doi.org/10.1016/j.compedu.2015.07.008

WIDIARTI, Yenni (2024). Canva and comic strips: Facilitate on teaching writing instruction. International Journal of Contemporary Studies in Education (IJ-CSE), 3(3), 245-255. https://doi.org/10.56855/ijcse.v3i3.1170

WINGSTRÖM, Roosa; HAUTALA, Johanna; & LUNDMAN, Riina (2024). Redefining creativity in the era of AI? Perspectives of computer scientists and new media artists. Creativity Research Journal, 36(2), 177-193. https://doi.org/10.1080/10400419.2022.2107850

XXU, Yongjun; LIU, Xin; CAO, Xin; HUANG, Changping; LIU, Enke; QIAN, Sen; LIU, Xingchen; WU, Yanjun; DONG, Fengliang; QIU, Cheng-Wei; QIU, Junjun; HUA, Keqin; SU, Wentao; WU, Jian; XU, Huiyu; HAN, Yong; FU, Chenguang; YIN, Zhigang; LIU, Miao; … & ZHANG, Jiabao (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), Article 100179. https://doi.org/10.1016/j.xinn.2021.100179

YUAN, Lingjie; & LIU, Xiaojuan (2025). The effect of artificial intelligence tools on EFL learners’ engagement, enjoyment, and motivation. Computers in Human Behavior, 162, Article 108474. https://doi.org/10.1016/j.chb.2024.108474

YURT, Eyup; & KASARCI, Ismail (2024). A questionnaire of artificial intelligence use motives: A contribution to investigating the connection between AI and motivation. International Journal of Technology in Education, 7(2), 308-325. https://doi.org/10.46328/ijte.725

ZAWACKI-RICHTER, Olaf; MARÍN, Victoria I.; BOND, Melissa; & GOUVERNEUR, Franziska (2019). Systematic review of research on artificial intelligence applications in higher education - where are the educators? International Journal of Educational Technology in Higher Education, 16(1), Article 39. https://doi.org/10.1186/s41239-019-0171-0

ZHAI, Xuesong; CHU, Xiaoyan; CHAI, Ching Sing; JONG, Morris Siu Yung; ISTENIC, Andreja; SPECTOR, Michael; LIU, Jia-Bao; YUAN, Jing; & LI, Yan (2021). A review of artificial intelligence (AI) in education from 2010 to 2020. Complexity, 2021(1), Article 8812542. https://doi.org/10.1155/2021/8812542

ZHOU, Wei (2023). Chat GPT integrated with voice assistant as learning oral chat-based constructive communication to improve communicative competence for EFL earners (No. arXiv:2311.00718). arXiv. https://doi.org/10.48550/arXiv.2311.00718