Teoría de situaciones didácticas gamificadas: un esquema detallado en la enseñanza de la secuencia de Padovan
Contenido principal del artículo
Resumen
Este trabalho possui o objetivo de apresentar uma sistematização de saberes para uma possível aplicação da gamificação no ensino da Matemática, fundamentado nas etapas do percurso metodológico da Teoria das Situações Didáticas (TSD) como metodologia de ensino. Para tanto, utilizou-se como base de metodologia de pesquisa as duas fases iniciais da Engenharia Didática (ED), referentes às análises preliminares e a priori. Ademais, usou-se como exemplo o assunto específico da extensão da sequência de Padovan para índice inteiro não positivo, com o enfoque em alunos no nível de graduação. Nesse sentido, o ponto central do trabalho não direciona-se para uma análise dos dados de uma aplicação em si, mas da demarcação de elementos representativos que pleiteiam uma sistematização e acumulação de saberes teóricos/científicos, para a formulação de uma proposta didática e metodológica no ensino da Matemática com a interação das estratégias de gamificação, TSD e ED.
Palabras clave:
Descargas
Detalles del artículo
Citas
Almouloud, S. A. (2007). Fundamentos da didática da matemática. Curitiba: Editora UFPR.
Almouloud, S. A., & Silva, M. J. F. (2012). Engenharia didática: evolução e diversidade Didactic engineering: evolution and diversity. Revemat: Revista Eletrônica de Educação Matemática, 7(2), 22-52. https://doi.org/10.5007/1981-1322.2012v7n2p22
Alves, F. (2015). Gamification: como criar experiências de aprendizagem engajadoras. São Paulo: DVS editora.
Alves, F. R. V., & Borges Neto, H. (2011). A existência da Sequência de Fibonacci no campo dos Inteiros: uma atividade de investigação apoiada nos pressupostos da Sequência Fedathi. Boletim GEPEM, (59), 135-140. http://costalima.ufrrj.br/index.php/gepem/article/view/81/268
Artigue, M. (1995). Ingeniería didáctica. In M. Artigue, R. Douady, L. Moreno, & P. Gómez (Ed.), Ingeniería didáctica en educación matemática: un esquema para la investigación y la innovación en la enseñanza y el aprendizaje de las matemáticas (pp. 33-59). México: Iberoamérica. https://core.ac.uk/reader/12341268
Brousseau, G. (1986). Fondements et méthodes de la didactique des mathématiques. Recherches en Didactique des Mathématiques, 7(2), 33–115. https://revue-rdm.com/1986/fondements-et-methodes-de-la/
Chou, Y. (2015). Actionable gamification: beyond points, badges and leaderboards. Fremont: Octalysis Media.
Csikszentmihalyi, M. (1999). A descoberta do fluxo: a psicologia do envolvimento com a vida cotidiana. Rio de Janeiro: Rocco.
Costa, D. F. da, Monteiro, J. A., Castro, J. B. de, Coutinho Júnior, A. de L., & Sales, G. L. (2019). Strategies for the elaboration of a gamed activity script. Research, Society and Development, 8(11), e188111451. https://doi.org/10.33448/rsd-v8i11.1451
Ferreira, R. de C. (2015). Números mórficos [Dissertação de Mestrado não publicada]. Universidade Federal da Paraíba, Brasil. https://repositorio.ufpb.br/jspui/handle/tede/8040
Kapp, K. M. (2012). Games, gamification, and the quest for learner engagement. T+ D, 66(6), 64-68. https://www.td.org/magazines/td-magazine/games-gamification-and-the-quest-for-learner-engagement
Leal, E. A., Miranda, G. J., & Carmo, C. R. S. (2013). Teoria da autodeterminação: uma análise da motivação dos estudantes do curso de ciências contábeis. Revista Contabilidade & Finanças, 24(62), 162-173. https://doi.org/10.1590/S1519-70772013000200007
McGonigal, J. (2017). A realidade em jogo. Rio de Janeiro: Editora Best Seller.
Pais, L. C. (2015). Didática da Matemática: uma análise da influência francesa. Belo Horizonte: Autêntica.
Ramos, V P. P., & Marques, J. J. P. (2017). Dos jogos educativos à gamificação. Revista de Estudios e Investigación en Psicología y Educación, Extr.(01), 319-323. https://doi.org/10.17979/reipe.2017.0.01.3005
Ribeiro Jr., P., Munhoz, R., Comiotto, T., & Oliveira, L. (2017). Do jogo ao game: considerações teóricas e articulações entre game e aprendizagem. Revista de Estudios e Investigación en Psicología y Educación, Extr.(13). https://doi.org/10.17979/reipe.2017.0.13.2301
Seenukul, P. (2015). Matrices which have similar properties to Padovan-Matrix and its generalized relations. SNRU Journal of Science and Technology, 7(2), 90-94. https://ph01.tci-thaijo.org/index.php/snru_journal/article/view/43656
Silva, J. B., Sales, G. L., & Castro, J. B. (2019). Gamificação como estratégia de aprendizagem ativa no ensino de Física. Revista Brasileira de Ensino de Física, 41(4). https://doi.org/10.1590/1806-9126-rbef-2018-0309
Silva, J. B., & Sales, G. L. (2017). Gamificação aplicada no ensino de Física: um estudo de caso no ensino de óptica geométrica. Acta Scientiae, 19(5). http://www.periodicos.ulbra.br/index.php/acta/article/view/3174
Silva, J. B., & Sales, G. L. (2018). Um panorama da pesquisa nacional sobre gamificação no ensino de Física. Tecnia, 2(1). http://revistas.ifg.edu.br/tecnia/article/view/172
Sokhuma, K. (2013). Padovan q-matrix and the generalized relations. Applied Mathematical Sciences, 7(56), 2777-2780. https://doi.org/10.12988/ams.2013.13247
Spinadel, V. W., & Buitrago, A. R. (2009). Towards van der Laan’s Plastic Number in the Plane. Journal for Geometry and Graphics, 13(2), 163-175. http://www.heldermann-verlag.de/jgg/jgg13/j13h2spin.pdf
Stewart, I. (1996). Tales of a neglected number. Scientific American, 274(6), 102-103. https://www.jstor.org/stable/24989576
Vieira, R. P. M., & Alves, F. R. V. (2019). A Sequência de Padovan e o número plástico: uma análise prévia e a priori. Research, Society and Development, 8(8), e26881212. https://doi.org/10.33448/rsd-v8i8.1212
Voet, C., & Schoonjans, Y. (2012). Benedictine thought as a catalyst for 20st Century liturgical space. Proceedings of the Second International Conference of the European Architectural History Network (pp. 255-261). https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1683918&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US