Main Article Content

Joan Guàrdia-Olmos
Facultat de Psicologia. Institut de Neurociències Universitat de Barcelona
Spain
Vol. 3 No. 2 (2016), Articles, pages 75-80
DOI: https://doi.org/10.17979/reipe.2016.3.2.1847
Submitted: Oct 22, 2016 Accepted: Oct 22, 2016 Published: Sep 8, 2016
How to Cite

Abstract

In the last thirty years the use of Structural Equation Modeling (SEM) has been increasing in an exponential manner. Such is this increase that we are witnessing, sometimes a use so far from the correct and appropriate practice with this type of multivariate statistical technique. In this short paper we want to make a presentation of the different stages to follow in the use of SEM, and a presentation of the most common options and recommendations to consider in those same phases.

Downloads

Download data is not yet available.

Article Details

References

Aguinis, H. (2004). Regression analysis for categorical moderators. New York, NY: Guilford Press.

Bentler, P.M., & Wu, E.J.C. (2002). EQS 6 for Windows. User’s Guide. Encino, CA: Multivariate Software, Inc.

Bollen, K.A. & Long, J.S. (1993). Testing Structural Equation Models. Newbury Park, CA: Sage.

Brown, T.A. (2006). Confirmatory Factor Analysis for Applied Research. New York. Guilford Press.

Byrne, B.M. (1994). Structural equation modeling with EQS and EQS/Windows: Basic concepts, applications, and programming. Thousand Oaks, CA: Sage.

Byrne, B.M. (2010). Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming (2nd ed.). New York, NY: Routledge.

Comrey, A.L. (1985). Manual de análisis factorial. Madrid: Cátedra. [Original en inglés: A First Course in Factor Analysis. New York: Academic Press].

Congdom, P. (2003). Applied Bayesian Modelling. Chichester, UK: Wiley.

Crawley, M.J. (2007). The R Book. Chichester, UK: Wiley.

Dunn, G., Everitt, B., & Pickles, A. (1993). Modelling covariances and latent variables using EQS. Boca Raton, FL: Chapman & Hall/CRC.

Everitt, B., & Hothorn, T. (2011). An introduction to applied multivariate analysis with R. New York, NY: Springer.

Everitt, B.S., & Dunn, G. (2010). Applied multivariate data analysis (2nd ed.). Chichester, UK: Wiley. http://dx.doi.org/10.1002/9781118887486

Field, A. (2013). Discovering statistics using SPSS (4th ed.). London: Sage.

Gifi, A. (1990). Nonlinear Multivariate Analysis. Chichester: Wiley.

Kline, R.B. (2015). Principles and Practice of Structural Equation Modeling (4th ed.). New York: Guilford.

Loehlin, J.C. (2004). Latent variable models: an introduction to factor, path, and structural analysis (4rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

Millsap, R.E., & Maydeu-Olivares, A. (2009). The SAGE Handbook of Quantitative Methods in Psychology. London: Sage.

Mulaik, S. (2009). Foundations of Factor Analysis (2nd ed.). Boca Raton, FL: CRC Press.

Murell, P. (2012). R Graphics (2nd ed.). Boca Raton, FL: CRC Press.

Muthén, L.K. & Muthén, B.O. (1998-2010). Mplus User’s Guide. Sixth Edition. Los Angeles, CA: Muthén & Muthén

Murphy, K.R.; Myors, B., & Wolach, A. (2014). Statistical Power Analysis (4th ed.). New York, NY: Routledge.

Raykov, T., & Marcoulides, G.A. (2006). A First Course in Structural Equation Modeling (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

Todmnan, J., & Dugard, P. (2007). Approaching multivariate analysis: An introduction for psychology. New York: Psychology Press.

Verzani, J. (2014). Using R for Introductory Statistics (2nd ed.). Boca Raton, FL: CRC Press.